Journal of engineering physics

, Volume 41, Issue 1, pp 789–793 | Cite as

Steady-state temperature distribution in an inhomogeneous medium with local inclusions

  • Yu. I. Malov
  • L. K. Martinson
Article
  • 12 Downloads

Abstract

We present a modification of the method of image regions [G. I. Marchuk, Methods of Numerical Mathematics, Springer-Verlag [1975)] to solve the boundary-value problem for the steady-state temperature distribution in an irregular multiply connected region.

Keywords

Statistical Physic Temperature Distribution Image Region Inhomogeneous Medium Connected Region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. I. Marchuk, Methods of Numerical Mathematics, Springer-Verlag (1975).Google Scholar
  2. 2.
    A. A. Samarskii, Dokl. Akad. Nauk SSSR,121, No. 2, 225–228 (1958).Google Scholar
  3. 3.
    V. Ya. Rivkind, in: Problems of Mathematical Analysis, Boundary Value Problems, and Integral Equations [in Russian], Leningrad State Univ. (1966), pp. 110–119.Google Scholar
  4. 4.
    Yu. I. Malov and L. K. Martinson, Inz.-Fiz. Zh.,32, No. 3, 524–532 (1977).Google Scholar
  5. 5.
    V. A. Il'in, Usp. Mat. Nauk,23, No. 2, 61–120 (1968).Google Scholar
  6. 6.
    Yu. I. Malov and L. K. Martinson, Tr. MVTU, No. 218, 64–68 (1976).Google Scholar
  7. 7.
    Yu. I. Malov, L. K. Martinson, and K. B. Pavlov, Magn. Gidrodin., No. 4, 3–21 (1975).Google Scholar
  8. 8.
    L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], Fizmatgiz, Moscow (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Yu. I. Malov
    • 1
  • L. K. Martinson
    • 1
  1. 1.N. É. Bauman Higher Technical SchoolMoscow

Personalised recommendations