Journal of engineering physics

, Volume 41, Issue 4, pp 1112–1116 | Cite as

Numerical analysis of transverse streamlining of a staggered bundle of tubes

  • I. A. Belov
  • N. A. Kudryavtsev
Article
  • 20 Downloads

Abstract

The difference scheme of second-order precision [1] is applied to the analysis of transverse streamlining of coaxial circular tubes in a staggered bundle by a viscous incompressible fluid.

Keywords

Statistical Physic Difference Scheme Incompressible Fluid Circular Tube Viscous Incompressible Fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Arakawa, “Computational design for long-term numerical integration in the equation of fluid flow: two-dimensional flow of incompressible fluid, Part 1,” J. Comput. Phys.,1, 119–143 (1966).Google Scholar
  2. 2.
    D. C. Thoman and A. A. Szewczyk, “Time-dependent viscous flow over a circular cylinder,” Phys. Fluids, Suppl. 2, 76–86 (1969).Google Scholar
  3. 3.
    B. E. Launder and T. H. Massey, “Numerical prediction of viscous flow and heat transfer in tube banks,” J. Heat Transfer,100, 565–571 (1978).Google Scholar
  4. 4.
    V. M. Antuf'ev and G. S. Beletskii, Heat Transfer and Aerodynamic Drag at Tubes in a Transverse Stream [in Russian], Mashgiz, Moscow (1948).Google Scholar
  5. 5.
    V. I. Gurov, E. N. Inozemtseva, Yu. A. Koshmarov, and S. B. Svirshchevskii, “Drag at bundles of cylinders transversely streamlined by a gas at low values of the Reynolds number,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 180–183 (1976).Google Scholar
  6. 6.
    A. A. Zhukauskas, V. I. Makaryavichus, and A. A. Shlanchyauskas, Heat Transfer at Bundles of Tubes in a Transverse Stream [in Russian], Mintis, Vilnius (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • I. A. Belov
    • 1
  • N. A. Kudryavtsev
    • 1
  1. 1.Leningrad Institute of MechanicsUSSR

Personalised recommendations