Journal of engineering physics

, Volume 20, Issue 5, pp 600–604 | Cite as

Derivation of the thermal resistance of the contact between systems with corrugated surfaces

  • V. M. Popov
  • M. S. Lazarev
Article
  • 13 Downloads

Abstract

Contact thermal resistance is considered for joints with corrugated surfaces. Formulas are derived that are confirmed by experiment.

Keywords

Statistical Physic Thermal Resistance Contact Thermal Resistance Corrugate Surface 

Notation

Rc

total thermal resistance of contact, m2 · deg/W

RM, Rcl

thermal resistance of real contact and of contactless region, m2· deg/W

ϕ

coefficient of contraction of heat flux lines to spots of real contact

Sm, Sc So

real, contour and nominal areas of contact surfaces, m2

a

mean radius of contact spot, m

¯λM

reduced thermal conductivity of contact (1 and 2) materials, W/m · deg

λc

thermal conductivity of contact medium, W/m · deg

n

number of contact spots of microroughnesses at nominal contact surface

α

area ratio

b,ν

parameters of support curve of surface

r

radius of roughness, m

qc

contour pressure, N/m2

N

normal load, N

ω

coefficient depending on deformation mechanism

B

coefficient characterizing properties

K

coefficient depending onν andω

hmax hav

maximum and mean height of microroughness protrusions, m

P

specific normal load to contact surface, N/m2

E

Young's modulus, N/m2

Rw

wave radius, m

nw

numbers of wave contact spots at nominal surface

Lel, Lp

longitudinal and transverse wave pitch, m

δeq

equivalent thickness of intercontact laminar, m

Hav

mean height of waves, m

ε

relative approach of surfaces under load

c

approach of surfaces under load

HB

Brinell hardness, N/m2

μ

Poisson's ratio

η2

relative contact surfaces

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. T. Shvets et al., Trudy Inst. Teplolnérgetiki AN UkrSSR, No. 12 (1955).Google Scholar
  2. 2.
    Yu. P. Shlykov and E. A. Ganin, Contact Heat Transfer [in Russian], Gosénergoizdat, Moscow (1963).Google Scholar
  3. 3.
    Yu. P. Shlykov, Teploénergetika, No. 10 (1965).Google Scholar
  4. 4.
    I. V. Kragel'skii, Friction and Wear [in Russian], Mashgiz, Moscow (1962).Google Scholar
  5. 5.
    N. B. Demkin, The Actual Contact Area of Solid Surfaces [in Russian], Izd. AN SSSR (1962).Google Scholar
  6. 6.
    A. M. Clausing and B. T. Chao, Univ. of Illinois. Eng. Exp. Sta. Report, ME-TN-242-1 (August, 1963).Google Scholar
  7. 7.
    L. C. Roess, Beacon, New York (1965).Google Scholar
  8. 8.
    F. Boeschten and E. F. M. Van der Held, Physica,23, No. 1 (1957).Google Scholar
  9. 9.
    S. Timoschenko and I. N. Goodier, Theory of Elasticity, McGraw-Hill, New York (1951).Google Scholar
  10. 10.
    N. B. Demkin, in: Theory of Friction and Wear [in Russian], Mashinostroenie, Moscow (1968).Google Scholar
  11. 11.
    P. E. D'yashenko et al., Quantitative Evaluation of the Roughness of Machined Surfaces [in Russian], Izd. AN SSSR (1952).Google Scholar
  12. 12.
    V. M. Popov et al., An Apparatus for Measuring the Thermal Conduction of Contacts in Steady and Transient Sates [in Russian], GOSINTI (1967).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1973

Authors and Affiliations

  • V. M. Popov
    • 1
  • M. S. Lazarev
    • 1
  1. 1.Wood Technology InstituteVoronezh

Personalised recommendations