Journal of engineering physics

, Volume 20, Issue 5, pp 565–570 | Cite as

Gas absorptivity in a complete spectrum

  • S. P. Detkov
Article
  • 21 Downloads

Abstract

Necessary conditions are established for the validity of the Hottel formulas for the absorptivity relative to black radiation. The formulas are used in describing the absorption of a badly mixed medium and for nonblack incident radiation.

Keywords

Radiation Statistical Physic Incident Radiation Complete Spectrum Mixed Medium 

Notation

x

ray path in mat

p, P

partial and total pressure

Peff

effective broadening pressure

T, T0

gas and wall temperatures, °K

T*, Ti

selected temperature values

Tc

weighted-mean temperature

a0

absorptivity of the gas for black radiation

a

same for a flux with nonblack spectrum

ε

emissivity

m, u, n, χ,η

power exponents

i0j

Planck function for the center of the band, cm · W/m2 · sr

Ij

incident flux intensity at the center of the band j, cm · W/m2 · sr

I

integrated incident flux intensity, W/m2 · sr

Aj

integral absorption (equivalent width) of band f, cm−1

Āj

mean absorption in the band

ω

wave number, cm−1

ω0

position of the band center

Δ ωj

width parameter

Δ ωeffj

effective width

Δωj

total width of the band j, cm−1

Dj

mean transmissivity in the band j

S

integrated line intensity, cm−1/mat

d, b

spacing between lines and their half-width, cm−1

Sj

integrated intensity of the band j

L

Landenburg and Reiche functions

αω

spectral absorption coefficient, mat−1

Φ(T)

dimensionless function

ci

dimensionless number

R*, Rc

general notation for parameters averaged over the band and for Tc

E

Elsasser function

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. C. Hottel and A. F. Serofim, Radiative Transfer, McGraw-Hill, New York (1967).Google Scholar
  2. 2.
    S. S. Penner, Quantitative Molecular Spectroscopy and Radiativity of Gases [Russian translation], IL, Moscow (1963).Google Scholar
  3. 3.
    Edwards, Teploperedacha, No. 1, 3 (1962).Google Scholar
  4. 4.
    A. S. Nevskii and L. A. Chukanova, Report of the All-Union Scientific-Research Institute of Metallurgical Thermal Engineering, Sverdlovsk (1969).Google Scholar
  5. 5.
    H. C. Hottel and R. B. Egbert, Trans. AIChE,33, No. 3, 531 (1942).Google Scholar
  6. 6.
    S. P. Detkov, Inzh. Fiz. Zh.,18, No. 4 (1970).Google Scholar
  7. 7.
    R. M. Goody, Quart. J. Roy. Meteorol. Soc.,78, 165 (1952).Google Scholar
  8. 8.
    Edwards, Teploperedacha, No. 2, 96 (1969).Google Scholar
  9. 9.
    R. Goody, Atmospheric Radiation [Russian translation], Mir, Moscow (1966).Google Scholar
  10. 10.
    S. De Soto, Chem. Engn. Progress Simp. Ser.,61, No. 59, 138 (1965).Google Scholar
  11. 11.
    S. De Soto, Int. J. Heat Mass Transfer,11, No. 1, 39 (1968).Google Scholar
  12. 12.
    S. S. Penner and P. Varanasi, J. Quant. Spectr. Rad. Transfer,6, No. 2 (1966).Google Scholar
  13. 13.
    R. Echigo, N. Nishiwaki, and M. Hirata, Bull. of JSME,10, No. 40, 671 (1967).Google Scholar
  14. 14.
    S. S. Ferriso, C. B. Ludwig, and A. L. Thomson, J. Quant. Spectr. Rad. Transfer,6, No. 3, 241 (1966).Google Scholar
  15. 15.
    Edwards, Glassen, Hauser, and Tusher, Teploperedacha,89, No. 3, 26 (1967).Google Scholar
  16. 16.
    Yu. A. Popov, Inzh. Fiz. Zh.,17, No. 3 (1969).Google Scholar
  17. 17.
    A. S. Nevskii, Heat Transmission in Martens Furnaces [in Russian], Metallurgizdat (1963).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1973

Authors and Affiliations

  • S. P. Detkov

There are no affiliations available

Personalised recommendations