Springer Seminars in Immunopathology

, Volume 18, Issue 4, pp 515–533 | Cite as

Immunopathology of human immunodeficiency virus infection in the gastrointestinal tract

  • Thomas Schneider
  • Reiner Ullrich
  • Martin Zeitz


The intestinal (in particular rectal) mucosa is an important portal of entry of HIV in homosexual men, who represent the vast majority of HIV-infected patients in Europe and North America. There are several possibilities for HIV to reach the CD4+ T cells, macrophages and follicular dendritic cells in the intestinal mucosa. HIV may be transported through M cells directly to mucosal lymphoid follicles. Alternatively, HIV may infect enterocytes via the Fc-receptor by antibody-bound HIV or via a CD4-independent receptor. By successive budding on the basal side of enterocytes HIV may be released into the lamina propria. Furthermore, in patients not infected by the intestinal route, HIV may also rapidly enter the intestinal mucosa by other mechanisms. Intestinal T lymphocytes are mainly activated memory T cells reentering the mucosal surfaces after circulating through the peripheral blood. In the periphery they may be preferentially infected by HIV. Accumulation of infected T cells could thus occur in the intestinal mucosa. The special phenotypical and functional characteristics of intestinal T lymphocytes may affect the replication and cytopathology of HIV, resulting in an accelerated loss of CD4+ T cells in the lamina propria. CD4 T cells play a critical role in antigen-dependent B cell differentiation, thus the pronounced CD4 T cell depletion in the intestinal mucosa may be responsible for the observed decrease of IgA plasma cells and a reduced secretion of IgA2. Depletion and functional impairment of activated mucosal LPL with consequent altered cytokine secretion in HIV infection could explain the breakdown of the mucosal immune barrier, leading to secondary opportunistic or nonopportunistic infections and secondary malignancies. Furthermore, several viral factors like thenef gene product may influence T cell activation and function, especially in the gastrointestinal tract contributing to the observed pronounced and early loss of CD4 T cells in the mucosal lamina propria. In addition, due to the interrelation between the mucosal immune system and epithelium, these changes might be responsible for the partial small intestinal mucosal atrophy and maturational defects in enterocytes observed in HIV-infected patients.


Human Immunodeficiency Virus Human Immunodeficiency Virus Infection Lamina Propria Intestinal Mucosa Lymphoid Follicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adachi A, Koenig S, Gendelman HE, Daughtry D, Gattom CS, Fauci AS, Martin MA (1987) Productive, persistent infection of human colerectal cell lines with human immunodeficiency virus. J Virol 61: 209Google Scholar
  2. 2.
    Amerongen HM, Weltzin R, Famet CM, Michetti P, Haseltine WA, Neutra MR (1991) Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J Acquir Immune Defic Syndr 4: 760Google Scholar
  3. 3.
    Anonymous (1989) HIV-associated enteropathy. Lancet 2: 777Google Scholar
  4. 4.
    Autran B, Mayaud CM, Raphael M, Plata F, Denis M, Bourgin A, Guillon JM, Debre P, Akoun G (1988) Evidence for a cytotoxic T-lymphocyte alveolitis in human immunodeficiency virus-infected patients. AIDS 2: 179Google Scholar
  5. 5.
    Baier M, Werner A, Bannert N, Metzner K, Kurth R (1995) HIV suppression by interleukin-16. Nature 378: 563Google Scholar
  6. 6.
    Batman PA, Miller AR, Forster SM, Harris JR, Pinching AJ, Griffin GE (1989) Jejunal enteropathy associated with human immunodeficieny virus infection: quantitative histology. J Clin Pathol 42: 275Google Scholar
  7. 7.
    Batman AP, Fleming SC, Sedgwick PM, MacDonald TT, Griffin GE (1994) HIV infection of human fetal intestinal explant cultures induces epithelial cell proliferation. AIDS 8: 161Google Scholar
  8. 8.
    Becker A, Schneider T, Schmidt W, Habermehl KO, Zeitz M, Riecken EO, Ullrich R (1994) Die duodenale Mukosa ist im Vergleich zum peripheren Blut ein bevorzugtes Reservoir der HIV-Infektion. Z Gastroenterol 32: 545Google Scholar
  9. 9.
    Bourinbaiar AS, Phillips DM (1990) HIV transmission across intact epithelia. In: Abstracts of VIIIth International Congress of Virology, Berlin. Habermehl-Eigenverlag, Berlin, p 391Google Scholar
  10. 10.
    Bourinbaiar AS, Phillips DM (1991) Transmission of human immunodeficiency virus from monocytes to epithelia. J Acquir Immune Defic Syndr 4: 56Google Scholar
  11. 11.
    Bruce C, Buonocore L, Rose JK (1990) CD4 is retained in the endoplasmatic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 64: 5585Google Scholar
  12. 12.
    Budhraja M, Levendoglu K, Kocka F, Mangkomkanok M, Sherer R (1987) Duodenal muscolsal T cell subpopulation and bacterial cultures in acquired immune deficieny syndrome. Am J Gastroenterol 82: 427Google Scholar
  13. 13.
    Clayton F, Rela S, Gronin WJ, Torlakovic E, Sigal SH, Kotler DP (1992) Rectal muscosal pathology varies with human immunodeficiency virus antigen content and disease stage. Gastroenterology 103: 919Google Scholar
  14. 14.
    Clerici M, Shearer GM (1993) A TH1 to TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14: 107Google Scholar
  15. 15.
    Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-la, and MIP-lb as the major HIV-suppressive factors produced by CD8+ T cells. Science 270: 1811Google Scholar
  16. 16.
    Colebunders R, Lusakumuni K, Nelson AM, et al (1988) Persistent diarrhoea in Zairian AIDS patients: an endoscopic and histological study. Gut 29: 1687Google Scholar
  17. 17.
    Cozon G, Biron F, Jeannin M, Cannella D, Revillard J-P (1994) Secretory IgA antibodies toCryptosporidium parvum in AIDS patients with chronical cryptosporidiosis. J Infect Dis 169: 696Google Scholar
  18. 18.
    Culman B, Gombard E, Kieny M-P, Guy B, Dreyfus F, Saimont A-G, Serem D, Levy J-P (1989) An antigenic peptide of the HIV-1 nef protein recognized by cytotoxic T lymphocytes of seropositive individuals in association with different HLA-B molecules. Eur J Immunol 19: 2383Google Scholar
  19. 19.
    Cummins AG, LaBrooy JT, Stanley DP, Rowland R, Shearman DJ (1990) Quantitative histological study of enteropathy associated with HIV infection. Gut 31: 317Google Scholar
  20. 20.
    Dagleish AG, Beverly PCL, Clapham PR, Crawford DHJ, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763Google Scholar
  21. 21.
    Du Z, Lang SM, Sasseville VG, Lackner AA, Ilyniskii PO, Daniel MD, Jung JU, Desosiers RC (1995) Identification of a nef allele that causes lymphocyte activation and acute disease in Macaque monkeys. Cell 82: 665Google Scholar
  22. 22.
    Ehrenpreis ED, Patterson BK, Bramer JA, Yokoo H, Rademaker AW, Glogowski W, Noskin GA, Craig RM (1992) Histopathologic findings of duodenal biospy specimens in HIV-infected patients with and without diarrhoea and malabsorption. Am J Clin Pathol 97: 21Google Scholar
  23. 23.
    Ellakany S, Whiteside TL, Schade RR, Thiel van DH (1987) Analysis of intestinal lymphocyte subpopulations in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Am J Clin Pathol 87: 356Google Scholar
  24. 24.
    Embretson J, Zupanic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, Haase AT (1993) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362: 359Google Scholar
  25. 25.
    Eriksson K, Kilander A, Hagberg L, Norkrans G, Holmgren J, Czerkinsky C (1995) Virus-specific antibody production and polyclonal B cell activation in the intestinal mucosa of HIV-infected individuals. AIDS 9: 695Google Scholar
  26. 26.
    Evans CM, Phillips AD, Walker-Smith JA, MacDonald TT (1992) Activation of lamina propria cells induces crypt epithelial proliferation and goblet cell depletion in cultured human fetal colon. Gut 33: 230Google Scholar
  27. 27.
    Fan J, Bass HZ, Fahey JL (1993) Elevated IFN-γ and decreased IL-2 gene expression are associated with HIV infection. J Immunol 151: 5031Google Scholar
  28. 28.
    Fantini J, Yahi N, Cherman J-C (1991) Human immunodeficiency virus can infect the apical and basolateral surface of human colonic epithelial cells. Proc Natl Acad Sci USA 88: 9297Google Scholar
  29. 29.
    Fleming SC, Kapembwa MS, MacDonald TT, Griffin GE (1992) Direct in vivo infection of human intestine with HIV-1. AIDS 6: 1099Google Scholar
  30. 30.
    Fox CH, Kotler D, Tierney A, Wilson CS, Fauci AS (1989) Detection of HIV-1 RNA in the lamina propria of patients with AIDS and gastrointestinal disease. J Infect Dis 159: 467Google Scholar
  31. 31.
    Garcia JV, Miller AD (1991) Serine phosporylation-independent downregulation of cell surface CD4 by Nef. Nature 350: 508Google Scholar
  32. 32.
    Gimble JM, Duh E, Ostrove JM, Gendelman HE, Max EE, Rabson AB (1988) Activation of the immunodeficiency virus long terminal repeat by herpes simplex type 1 is associated with induction of a nuclear factor that binds to the NF-nB/core enhancer sequence. J Virol 62: 4104Google Scholar
  33. 33.
    Graziosi C, Pantaleo G, Gantt KR, Fortin J-P, Demarest JF, Cohen OJ, Sekaly RP, Fauci AS (1994) Lack of evidence for the dichotomy of TH1 and TH-2 predominance in HIV-infected individuals. Science 265: 248Google Scholar
  34. 34.
    Greenson JK, Belitos PC, Yardly JH, Bartlett JG (1991) AIDS enteropathy: occult enteric infections and duodenal mucosal alterations in chronic diarrhoea. Ann Intern Med 114: 366Google Scholar
  35. 35.
    Griffiths CE, Barrison IG, Leonard JN, Caun K, Valdimarsson H, Fry L (1988) Preferential activation of CD4 T lymphocytes in the lamina propria of gluten-sensitve enteropathy. Clin Exp Immunol 72: 280Google Scholar
  36. 36.
    Heise W, Mosertz P, Skörde J, L'age M (1988) Gastrointestinale Befunde bei der HIV-Infektion. Dtsch Med Wochenschr 113: 1588Google Scholar
  37. 37.
    Heise W, Dandekar S, Kumar P, Duplantier RM, Halsted CH (1991) Human immunodeficinency virus infection of enterocytes and mononuclear cells in human jejunal mucosa. Gastroenterology 100: 1521Google Scholar
  38. 38.
    Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lympocytes in HIV-1 infection. Nature 373: 123Google Scholar
  39. 39.
    Hussain LA, Kelly CG, Hecht E-M, Fellowes R, Jourdan M, Lehner T (1991) The expression of Fc receptors for immunoglobulin G in human rectal epithelium. AIDS 5: 1089Google Scholar
  40. 40.
    Jackson S (1990) Secretory and serum IgA are inversely altered in AIDS patients. In: MacDonald TT, Challacombe SJ, Bland PW, Stokes CR, Heatley RV, Mowat AM (eds) Advances in mucosal immunology. Proceedings of the Fifth International Congress of Mucosal Immunology. Dodrecht, Boston, pp 665–668Google Scholar
  41. 41.
    James SP, Graeff AS, Zeitz M (1987) Predominance of helper-inducer T cells in mesenteric lymph node and intestinal lamina propria lymphocytes of normal non-human primates. Cell Immunol 107: 372Google Scholar
  42. 42.
    James SP, Zeitz M, Kanof ME, Kwan WC (1988) Intestinal lymphcyte populations and mechanisms of cell-mediated immunity. Immmunol Allergy Clin North Am 8: 369Google Scholar
  43. 43.
    Janoff EN, Smith PD (1988) Perspectives on gastrointestinal infections in AIDS. Gastroenterol Clin North Am 17: 451Google Scholar
  44. 44.
    Janoff EN, Jackson S, Wahl SM, Thomas K, Peterman JH, Smith PD (1994) Intestinal mucosa immunbogiobulins during human immunodeficiency virus type 1 infection. J Infect Dis 170: 299Google Scholar
  45. 45.
    Jarry A, Cortez A, Rene E, Muzeau F, Brousse N (1990) Infected cells and immune cells in the gatrointestinal tract opf AIDS patients. An immunohistochemical study of 127 cases. Histopathology 16: 133Google Scholar
  46. 46.
    Kaetzel CS, Robinson JK, Chintalacharuvu KR, Vaerman JP, Lamm ME (1992) The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: A local defense function for IgA. Proc Natl Acad Sci USA 88: 8796Google Scholar
  47. 47.
    Kestler HW, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of the nef gene for maintenance of high virus loads and for the development of AIDS. Cell 65: 651Google Scholar
  48. 48.
    Kingsley LA, Delse R, Kaslow R, et al (1987) Risk factors for seroconvesion to human immunodeficiency virus among male homosexuals. Lancet I: 345Google Scholar
  49. 49.
    Kiyono H, Cooper MD, Kearney IF, Mosteller LM, Michalek SM, Koopman WJ, McGhee JR (1984) Isotype specificity of helper T cell clones: Peyer's patch Th cells preferentially collaborate with mature IgA B cells for IgA responses. J Exp Med 159: 798Google Scholar
  50. 50.
    Kotler DP, Gaetz HP, Lange M, Klein EB, Holt PR (1984) Enteropathy associated with the acquired immunodeficiency syndrome. Ann Intern Med 101: 421Google Scholar
  51. 51.
    Kotler DP, Scholes TV, Tierney AR (1987) Intestinal plasma cell alterations in the acquired immunodeficiency syndrome. Dig Dis Sci 32: 129Google Scholar
  52. 52.
    Kotler DP, Francisco A, Clayton F, Scholes JV, Orenstein JM (1990) Small intestinal injury and parasitic disease in AIDS. Ann Intern Med 113: 444Google Scholar
  53. 53.
    Kotler DP, Reka S, Borcich A, Cronin WJ (1991) Detection, localisation and quantiation of HIV-associated antigens in the intestinal biospies from patients with HIV. Am J Pathol 139: 823Google Scholar
  54. 54.
    Kotler DP, Reka S, Clayton F (1993) Intestinal mucosal inflammation associated with human immunodeficiency virus infection. Dig Dis Sci 38: 1119Google Scholar
  55. 55.
    Kundu SK, Merigan TC (1992) Equivalent recognition of HIV proteins, Env, Gag and Pol by CD4+ and CD8+ cytoxic T-lymphocytes. AIDS 6: 643Google Scholar
  56. 56.
    Kunimoto DY, Harriman GR, Strober W (1988) Regulation of IgA differentiation in CH12LX cells by lymphokines: IL-4 induces membrane IgM-positive CH12LX B cells to express membrane IgA and IL-5 induces membrane IgA-positive CH12LX cells to secrete IgA. J Immunol 141: 713Google Scholar
  57. 57.
    Lathey JL, Kanangat S, Rouse BT (1994) Differential expression of tumor necrosis factor a and interleukin 1ß compared with interleukin 6 in monocytes from human immunodeficiency virus-positive individuals measured by polymerase chain reaction. J Acquir Immune Defic Syndr 7: 109Google Scholar
  58. 58.
    Lehner T, Hussain L, Chapman M (1991) Mucosal transmission of HIV. Nature 335: 709Google Scholar
  59. 59.
    Lim SG, Condez A, Lee CA, Johnson MA, Elia C, Poulter LW (1993) Loss of mucosal CD4 lymphocytes is an early feature of HIV infection. Clin Exp Immunol 92: 4448Google Scholar
  60. 60.
    Lim SG, Condez A, Poulter LW (1993) Mucosal macrophage subset of the gut in HIV: decrease in antigen-presenting cell phenotype. Clin Exp Immunol 92: 442Google Scholar
  61. 61.
    MacDonald TT, Spencer J (1988) Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med 167: 1341Google Scholar
  62. 62.
    MacDonald TT, Spencer J (1990) Gut immunology. Bailliere's Clin Gastroenterol 4: 291Google Scholar
  63. 63.
    Mackewicz CE, Ortega HW, Levy JA (1991) CD8+ cell anti-HIV activity correlates wit the clinical state of the infected individual. J Clin Invest 87: 1462Google Scholar
  64. 64.
    Maggi E, Mazzetti M, Ravina A, Annunziato F, De Carli M, Piccinni MP, Manetti R, Carbonari M, Pesce AM, Del Prete G, Romagnani S (1994) Ability of HIV to promote a TH1 to THO cells. Science 265: 244Google Scholar
  65. 65.
    Malebranche R, Arnoux E, Guerin JM, Pierre GD, Laroche AC, Elie R, Morisset PH, Spira T, Mandeville R, Drotman P, Seemayer T, Dupuy JM (1983) Acquired immunodeficiency syndrome with severe gastrointestinal manifestations in Haiti. Lancet II: 878Google Scholar
  66. 66.
    Matewson JJ, Jiang ZD, DuPont HL, Chintu C, Luo N, Zumala A (1994) Intestinal secretory IgA immune response against human immunodeficiency virus among infected patients with acute and chronic diarrhea. J Infect Dis 169: 614Google Scholar
  67. 67.
    Mathijs JM, Hing M, Grierson J, Goldschmidt C, Cooper DA, Cunningham AL (1988) HIV infection of rectal mucosa. Lancet I: 1111Google Scholar
  68. 68.
    Matusyama T, Kobayashi N, Yamamoto N (1991) Cytokines and HIV infection: is AIDS a tumor necrosis factor disease? AIDS 5: 1405Google Scholar
  69. 69.
    Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Nedrud JG (1992) Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 89: 6901Google Scholar
  70. 70.
    Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME (1993) A three-tiered view of the role of IgA in mucosal defense. Immunol Today 14: 430Google Scholar
  71. 71.
    McDougal JS, Mawle A, Cort SP, Nicholson JK, Cross GD, Scheppler CJ, Hicks D, Sligh J (1985) Cellular tropism of the human retrovirus HTLV-II//LAV. I. Role of T cell activation and expression of the T4 antigen. J Immunol 135: 3151Google Scholar
  72. 72.
    McGowan I, Radford-Smith G, Jewell DP (1994) Cytokine gene expresssion in HIV-infected intestinal mucosa. AIDS 8: 1569Google Scholar
  73. 73.
    Mohamed OA, Ashley R, Goldstein A, McElrath J, Dalessio J, Corey L (1994) Detection of rectal antibodies to HIV-1 by a sensitive chemiluminescent Western blot immunodetection method. J Acquir Immune Defic Syndr 7: 375Google Scholar
  74. 74.
    Moller F, Froland SS, Hvatum M, Radl J, Brandtzaeg P (1991) Both IgA subclasses are reduced in parotid salvia from patients with AIDS. Clin Exp Immunol 83: 203Google Scholar
  75. 75.
    Nabel GJ (1991) Tampering with transcription. Nature 350: 658Google Scholar
  76. 76.
    Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326: 711Google Scholar
  77. 77.
    Navikas V, Link J, Wahren B, Persson CH, Link H (1994) Increased levels of interferon-gamma (IFN-,y), IL-4 and transforming growth factor-beta (TGF-β) mRNA expressing blood mononuclear cells in human HIV infection. J Clin Exp Immunol 96: 59Google Scholar
  78. 78.
    Nelson JA, Wiley CA, Reynolds-Kotler C, Reese CE, Margaretten W, Levy JA (1988) Human immunodeficiency virus detected in bowel epithelium from patients with gastrointestinal symptoms. Lancet 1: 259Google Scholar
  79. 79.
    Nelson MR, Shanson DC, Hawkins D, Gazzard BG (1991) Shigella in HIV infection. AIDS 5: 1031Google Scholar
  80. 80.
    Nilssen DE, Moller F, Oktedalen O, Stig SF, Faussa O, Halsten TS, Brantzaeg P (1996) Intraepithelial γ/δ T cells in duodenal mucosa are related to the immune state and survival time in AIDS. J Virol 70: 3545Google Scholar
  81. 81.
    Nixon DF, McMichael AJ (1991) Cytotoxic T cell recognition of HIV proteins and peptides. AIDS 5: 1049Google Scholar
  82. 82.
    Owen RL, Jones AL (1974) Epithelial cell specialization within human Peyer's patch: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66: 189Google Scholar
  83. 83.
    Owen RL, Nemanic P (1978) Antigen processing structures of the ammalian intestinal tract: an SEM study of lymphoepithelial organs. Scanning Electron Microsc 2: 367Google Scholar
  84. 84.
    Owen RL, Pierce NF, Apple RT, Gray WC (1986) M cell transport ofVibrio cholerae from the intestinal lumen into Peyer's patches: a mechansism for antigen sampling and for microbial transepithelial migration. J Infect Dis 153: 1108Google Scholar
  85. 85.
    Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM, Kotler DP, Fauci AS (1991) Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc Natl Acad Sci USA 88: 9838Google Scholar
  86. 86.
    Pantaleo G, Graziosi C, Demarest JF, Butini L, Momroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS (1993) HIV infection is active and progressive in lymphoid tissue durinig the clinically latent stage of disease. Nature 362: 355Google Scholar
  87. 87.
    Pantaleo G, Graziosi C, Fauci A (1993) The immunopathogenesis of human immunodeficiency virus infection. N Eng J Med 328: 327Google Scholar
  88. 88.
    Poli G, Fauci AS (1992) The effect of cytokines and pharmacologic agents on chronic HIV infection. AIDS Res Hum Retrovirus 8: 191Google Scholar
  89. 89.
    Qiao L, Schfrman G, Betzler M, Meuer SC (1991) Functional properties of human lamina propria T lymphocytes assessed with mitogenic monoclonal antibodies. Immunol Res 10: 218Google Scholar
  90. 90.
    Quinn TC, Piot P, McCormick JB, Feinsod FM, Taelman H, Kapita B, Stevens W, Fauci AS (1987) Serologic and immunologic studies in patients with AIDS in North America and Africa. JAMA 252: 2617Google Scholar
  91. 91.
    Racz P (1990) Pathomorphologie des intestinalen Immunsystems. Third German AIDS Congress, 17–24 November, Hamburg. Futuramed-Verl. Ges., München, p55Google Scholar
  92. 92.
    Reka S, Kotler DP (1993) Detection and localisation of HIV RNA and TNF mRNA in rectal biopsies from patients with AIDS. Cytokine 5: 305Google Scholar
  93. 93.
    René E, Marche C, Regnier B, et al (1989) Intestinal infections in patients with acquired human immunodeficiency syndrome. Dig Dis Sci 34: 773Google Scholar
  94. 94.
    Rodgers VD, Fassett R, Kagnoff MF (1986) Abnormalities in intestinal mucosal T cells in homosexual populations including those with the lymphadenopathy syndrome and acquired immunodeficiency syndrome. Gastroenterology 90: 552Google Scholar
  95. 95.
    Rosenberg ZF, Fauci AS (1989) The immunopathogenesis of HIV infection. Adv Immunol 47: 377Google Scholar
  96. 96.
    Sanders ME, Makgoba M, Shaw S (1988) Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today 9: 195Google Scholar
  97. 97.
    Schieferdecker HL, Ullrich R, Hirseland H, Zeitz M (1992) T cell differentiation antigens on lympocytes in the human intestinal lamina propria. J Immunol 149: 2816Google Scholar
  98. 98.
    Schmidt W, Schneider T, Heise W, Epple H-J, Stöffler-Meilicke M, Liesenfeld O, Ignatius R, Zeitz M, Riecken E-O, Ullrich R (1996) Enteric viruses and coinfections in HIV-infected patients. J Acquir Immune Defic Syndr (in press)Google Scholar
  99. 99.
    Schneider T, Hildebrandt P, Rokos K, Schubert U, Rönspeck W, Grund C, Beck A, Blesken R, Kulins G, Oldenburg H, Pauli G (1992) Expression of nef, vpu, CA and CD4 during the infection of lymphoid and monocytic cell lines with HIV-1. Arch Virol 125: 161Google Scholar
  100. 100.
    Schneider T, Ullrich R, Bergs C, Schmidt W, Riecken EO, Zeitz M (1994) Abnormalities in subset distribution, activation and differentiation of T cells isolated from large intestine biopsies in HIV infection. Clin Exp Immunol 95: 430Google Scholar
  101. 101.
    Schneider T, Jahn H-U, Schmidt W, Riecken EO, Zeitz M, Ullrich R, Group (1995) Loss of CD4 T lymmphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Gut 37: 524Google Scholar
  102. 101a.
    Schneider T, Ullrich R, Jahn HU, Bergs C, Schmidt W, Dormann A, Zeitz M, Berlin Diarrheaf-Wasting Syndrome Study Group (1995) Loss of activated CD4-positive T cells and increase in activated cytotoxic CD8-positive T cells in the duodenum of patients infected with human immunodeficiency virus. Advances in experimental medicine and biology 371B: 1019–1021Google Scholar
  103. 102.
    Schnittman SM, Lane HC, Greenhouse J, Justement JS, Baseler M, Fauci AS (1990) Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci USA 87: 6058Google Scholar
  104. 103.
    Sooley RT (1990) Cytomegalovirus in the setting of infection with human immunodeficiency virus. Rev Infect Dis 12: 811Google Scholar
  105. 104.
    Smith PD, Fox CH, Masur H, Winter HS, Alling DW (1994) Quantitative analysis of mononuclear cells expressing human immunodeficiency virus type 1 RNA in esophageal mucosa. J Exp Med 180: 1541Google Scholar
  106. 105.
    Steffen M, Reinecker HC, Peterson J, Doehn C, Pfluger I, Voss A, Raedler A (1993) Differences in cytokine secretion by intestinal mononuclear cells, peripheral blood monocytes and alveolar macrophages from HIV-infected patients. Clin Exp Immunol 91: 30Google Scholar
  107. 106.
    Stevenson M, Zhang X, Volsky DJ (1987) Down-regulation of cell surface molecules during noncytopathic infection of T cells with human immunodeficiency virus. J Virol 61: 3741Google Scholar
  108. 107.
    Sweet SP, Rahman D, Challacombe SJ (1995) IgA subclasses in HIV disease: dichotomy between raised levels in serum and decreased secretion rates in saliva. Immunology 86: 556Google Scholar
  109. 108.
    Ullrich R, Zeitz M, Heise W, L'age M, Höffken G, Riecken EO (1989) Small intestinal structure and function in patients infected with human immunodeficiency virus (HIV): evidence for HIV-induced enteropathy. Ann Intern Med 111: 15Google Scholar
  110. 109.
    Ullrich R, Zeitz M, Heise W, L'age M, Ziegler K, Bergs C, Riecken EO (1990) Mucosal atrophy is associated with loss of activated T cells in the duodenal mucosa of human immunodeficiency virus (HIV)-infected patients. Digestion 46 [Suppl 2]: 302Google Scholar
  111. 110.
    Ullrich R, Riecken EO, Zeitz M (1991) HIV-induced enteropathy. Immunol Res 10: 456Google Scholar
  112. 111.
    Ullrich R, Heise W, Bergs C, L'age M, Riecken E-O, Zeitz M (1992) Effects of zidovudine treatment on the small intestinal mucosa in patients infected with HIV. Gastroenterology 102: 1483Google Scholar
  113. 112.
    Reference deletedGoogle Scholar
  114. 113.
    Van Noesel CJ, Gruters RA, Terpstra FG, Schellekens PT, Van Lier RA, Miedema F (1990) Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic human immunodeficiency virus-infected men. J Clin Invest 86: 293Google Scholar
  115. 114.
    Wain-Hobson S (1995) Virological mayhem. Nature 373: 102Google Scholar
  116. 115.
    Walker BD, Flexner C, Paradis TJ, Fuller TC, Hirsch MS, Schooley RT, Moss B (1988) HIV-1 reverse transcriptase is a target for cytotoxic T lymphocytes in infected individuals. Science 240: 64Google Scholar
  117. 116.
    Wei X, Ghosh SK, Taylor ME, Johson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373: 117Google Scholar
  118. 117.
    Weiss RA (1993) How does HIV cause AIDS? Science 260: 1273Google Scholar
  119. 118.
    Wu L, Rosser DSE, Schmidt MC, Berk A (1987) A TATA box implicated in EIA transcriptional activation of a simple adenovirus 2 promoter. Nature 326: 512Google Scholar
  120. 119.
    Yahi N, Baghdiguian S, Moreau H, Fantini J (1992) Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J Virol 66: 4848Google Scholar
  121. 120.
    Zeitz M, Greene WC, Peffer NJ, James SP (1988) Lymphocytes isolated from the intestinal lamina propria of normal nonhuman primates have increased expression of genes associated with T cell activation. Gastroenterology 94: 647Google Scholar
  122. 121.
    Zeitz M, Quinn TC, Graeff AS, James SP (1988) Mucosal T cells provide helper function but do not proliferate when stimulated by specific antigenin lymphogranuloma venereum proctitis in nonhuman primates. Gastroenterology 94: 353Google Scholar
  123. 122.
    Zeitz M, James SP, Ullrich R, Riecken EO (1989) Characteristics of intestinal T lymphocytes as potential target cells of HIV. In: Classen M, Dancygier H (eds) AIDS in gastroenterology and hepatology. Demeter, Gräfelfing, pp 14–17Google Scholar
  124. 123.
    Zeitz M, Schieferdecker HL, Ullrich R, Jahn HU, James SP, Riecken EO (1991) Phenotype and function of lamina propria T cells. Immunol Res 10: 199Google Scholar
  125. 124.
    Zeitz M, Ullrich R, Schneider T, Schieferdecker HL, Riecken EO (1994) Cell differentiation and proliferation in the gastrointestinal tract with respect to the local immune system. Ann NY Acad Sci 733: 75Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Thomas Schneider
    • 1
  • Reiner Ullrich
    • 2
  • Martin Zeitz
    • 1
  1. 1.Medical Clinic 11University of the SaarlandHomburg/SaarGermany
  2. 2.Department of Gastroenterology, Medical Clinic, Klinikum Benjamin FranklinFree University of BerlinGermany

Personalised recommendations