Catalysis Letters

, Volume 26, Issue 1–2, pp 101–107 | Cite as

Emission of excited potassium species from an industrial iron catalyst for ammonia synthesis

  • Klas Engvall
  • Andrzej Kotarba
  • Leif Holmlid
Article

Abstract

The angular dependence of potassium emission-desorption is studied from a fused iron catalyst of the type used for ammonia synthesis. The excited species (K*, K n * , etc.) and positive ions K+ have strongly different angular distributions. The bilobular distribution measured for ion desorption is concluded to be either due to excited atoms, so-called Rydberg atoms, or excited clusters. Both types of species have to desorb from the edges of the sample and become field ionized and deexcited just outside the sample, as reported in previous studies on an iron oxide catalyst. The peak in the normal direction measured for excited species is due to excited cluster formation outside the catalyst surface. Similarities with previous results for other catalysts are observed. The possibility that the promoter function of potassium in the ammonia synthesis is due to excited species is pointed out.

Keywords

angular dependence potassium emission-desorption fused iron catalyst ammonia synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.-D. Mross, Catal. Rev.-Sci. Eng. 25 (1983) 591.Google Scholar
  2. [2]
    A. Ozaki,Catalysis, Science and Technology, Vol. 1 (Springer, Berlin, 1981) ch. 3.Google Scholar
  3. [3]
    M. Bowker, Catal. Today 12 (1992) 153.Google Scholar
  4. [4]
    M.S. Spencer, Catal. Lett. 13 (1992) 45.Google Scholar
  5. [5]
    S.P.S. Andrew, Appl. Catal. A 90 (1992) N13.Google Scholar
  6. [6]
    J.B.C. Pettersson, K. Möller and L. Holmlid, Appl. Surf. Sci. 40 (1989) 151.Google Scholar
  7. [7]
    J. Lundin, K. Engvall, L. Holmlid and P.G. Menon, Catal. Lett. 6 (1990) 85.Google Scholar
  8. [8]
    K. Engvall, L. Holmlid and P.G. Menon, Appl. Catal. 77 (1991) 235.Google Scholar
  9. [9]
    C. Åman and L. Holmlid, Appl. Surf. Sci. 62 (1992) 201.Google Scholar
  10. [10]
    C. Åman and L. Holmlid, Appl. Surf. Sci. 64 (1993) 71.Google Scholar
  11. [11]
    K. Engvall, L. Holmlid, H. Prinz and H. Hofmann, Catal. Lett. 11 (1991) 41.Google Scholar
  12. [12]
    J.B.C. Pettersson and L. Holmlid, Surf. Sci. 211 (1989) 263.Google Scholar
  13. [13]
    T. Hansson, C. Åman, J.B.C. Pettersson and L. Holmlid, At. Mol. Opt. Phys. 23 (1990) 2163.Google Scholar
  14. [14]
    C. Åman and L. Holmlid, J. Phys. D 24 (1991) 1049.Google Scholar
  15. [15]
    R.F. Stebbings and F.B. Dunning,Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge, 1983) p. 91.Google Scholar
  16. [16]
    D.A. Dahl, SIMION PC/PS 2 version 4.02, Idaho National Engineering Laboratory, EG&G Inc. (1989).Google Scholar
  17. [17]
    P.P. Herrmann, J. Hoffnagle, N. Schlumpf, V.L. Telegdi and A. Weis, J. Phys. B 19 (1986) 535.Google Scholar
  18. [18]
    C. Åman, J.B.C. Pettersson and L. Holmlid, Chem. Phys. 147 (1990) 189.Google Scholar
  19. [19]
    G. Ertl, in:Catalytic Ammonia Synthesis, ed. J.R. Jennings (Plenum Press, New York, 1991) ch. 3.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Klas Engvall
    • 1
    • 2
  • Andrzej Kotarba
    • 1
    • 2
  • Leif Holmlid
    • 1
    • 2
  1. 1.Reaction Dynamics Group, Department of Physical ChemistryUniversity of GöteborgSweden
  2. 2.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations