Advertisement

Aquatic Geochemistry

, Volume 1, Issue 3, pp 313–328 | Cite as

Seasonal variations of zinc in a eutrophic lake

  • Laura Sigg
  • David Kistler
  • Markus M. Ulrich
Article

Abstract

Depth profiles of dissolved zinc were measured monthly over one year in Lake Greifen, a eutrophic lake. The concentrations are in the range 10–40 nM and show systematic variations over time and depth. Due to the increased binding to particles and subsequent settling, concentrations of zinc in the epilimnion decrease during summer stagnation. Clear correlations between Zn and major nutrients (P, Si) are, however, not observed in the water column. No accumulation of Zn occurs in the anoxic hypolimnion. The Zn sedimentation is related to the sedimentation of algae and of manganese oxide. A mass-balance calculation shows that 87% of the Zn input is retained in the sediments of Lake Greifen.

Key words

zinc eutrophic lake sedimentation mass-balance model trace elements depth profiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccini P. and Joller T. (1981) Transport processes of copper and zinc in a highly eutrophic and meromictic lake.Schweiz. Z. Hydrol. 43, 176–199.Google Scholar
  2. Balistrieri L., Murry J.W. and Paul B. (1992) The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: Response of seasonally anoxic conditions.Limnol. Oceanogr. 37, 529–548.Google Scholar
  3. Bruland K.W. (1980) Oceanographic distributions of cadmium, zinc, nickel, copper in the North Pacific.Earth Planet. Sci. Lett. 4, 176–198.Google Scholar
  4. Bruland K.W. (1983) Trace elements in sea-water. InChemical Oceanography (ed. P. Riley and R. Chester), Vol. 8, pp. 157–220. Academic Press, New York.Google Scholar
  5. Bruland K.W., Donat J.R. and Hutchins D.A. (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters.Limnol. Oceanogr. 36, 1555–1577.Google Scholar
  6. Hamilton-Taylor J. and Davison W. (1995) Redox-driven cycling of trace elements in lakes. In:Physics and Chemistry of Lakes (ed. A. Lerman, D. Imboden and J. Gat). Springer-Verlag, Berlin.Google Scholar
  7. Hydrologisches Jahrbuch der Schweiz (1990) Eidgenössisches Departement des Innern, Bundesamt für Umwelt, Wald und Landschaft, edited by Landeshydrologie und -geologie, Eidgenössische Drucksachen- und Materialzentrale, Bern, Switzerland.Google Scholar
  8. Johnson C.A., Ulrich M., Sigg L. and Imboden D.M. (1991) A mathematical model of the manganese cycle in a seasonally anoxic lake.Limnol. Oceanogr. 36, 1415–1426.Google Scholar
  9. Kiefer E. (1994) Bindung von Kupfer durch die AlgenartenCyclotella cryptica (Bacillariophyceae) undChlamydomonas reinhardtii (Chlorophyceae). Ph.D. thesis ETH No. 10786, Swiss Federal Institute of Technology, Zurich.Google Scholar
  10. Knauer K., Behra R. and Sigg L. (1995) Interactions of copper and zinc with freshwater algae. Submitted toEnv. Toxicol, Chem. Google Scholar
  11. Kuhn A. (1992) Arsen im eutrophen See: Eine Studie der saisonalen Redoxprozesse. Ph.D. thesis ETH No. 9783, Swiss Federal Institute of Technology, Zurich.Google Scholar
  12. Morel F.M.M., Hudson R.J.M. and Price N.M. (1991) Limitation of productivity by trace metals in the sea.Limnol. Oceanogr. 36, 1742–1755.Google Scholar
  13. Morfett K., Davison W. and Hamilton-Taylor J. (1988) Trace metal dynamics in a seasonally anoxic lake.Environ. Geol. Water Sci. 11, 107–114.Google Scholar
  14. Morse J.W. and Arakaki T. (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS).Geochim. Cosmochim. Acta 57, 3635–3640.Google Scholar
  15. Murray J.W. (1987) Mechanisms controlling the distribution of trace elements in oceans and lakes. In:Sources and Fates of Aquatic Pollutants (ed. R. Hites and S.J. Eisenreich), Adv. Chem. Ser. 216, pp. 153–184. Washington, DC.Google Scholar
  16. Peiffer S. and Frevert T. (1987) Potentiometric determination of heavy metal sulphide solubilities using a pH2S (glass/Ag0, Ag2S) electode cell.Analyst 112, 951–954.Google Scholar
  17. Reynolds G.L. and Hamilton-Taylor J. (1992) The role of planktonic algae in the cycling of Zn and Cu in a productive soft-water lake.Limnol. Oceanogr. 37, 1759–1769.Google Scholar
  18. Sigg L. (1985) Metal transfer mechanisms in lakes; the role of settling particles. InChemical Processes in Lakes (ed. W. Stumm), Chap. 13, pp. 283–310. Wiley, New York.Google Scholar
  19. Sigg L. and Zobrist J. (1989) Trace metals in atmospheric dry deposition: pH-dependent dissolution upon collection on a water surface. In:Heavy Metals in the Environment, 7th International Conference, Geneva 1989, pp. 53–56.Google Scholar
  20. Sigg L., Kuhn A., Xue H.-B., Kiefer E. and Kistler D. (1995) Cycles of trace elements (copper and zinc) in a eutrophic lake: Role of speciation and sedimentation. In:Aquatic Chemistry, Interfacial and Interspecies Processes (ed. C.R. O'Melia, C.P. Huang and J.J. Morgan), Adv. Chem. Ser. 244, pp. 177–194. Washington, DC.Google Scholar
  21. Standard Methods for the Examination of Water and Wastewater (1989) 17th Ed.Google Scholar
  22. Sturm M., Zeh U., Müller J., Sigg L. and Stabel H.H. (1982) Schwebstoffuntersuchungen im Bodensee mit Intervall-Sedimentationsfallen.Ecologae geol. Helv. 75, 579–588.Google Scholar
  23. Sunda W.G. and Huntsmann S.A. (1992) Feedback interactions between zinc and phytoplankton in seawater.Limnol. Oceanogr. 37, 25–40.Google Scholar
  24. Tessier A., Carignan R., Dubreuil B. and Rapin, F. (1989) Partitioning of zinc between the water column and the oxic sediments in lakes.Geochim. Cosmochim. Acta 53, 1511–1522.CrossRefGoogle Scholar
  25. Ulrich M.M. (1996) CHEMSEE, a user-friendly simulation tool for the modeling of chemical and biological processes in lakes.J. Chem. Edu., in prep.Google Scholar
  26. Watanabe H., Goto K., Taguchu S., McLaren J.W., Berman S.S. and Russell D.S. (1981) Preconcentration of trace elements in seawater by complexation with 8-hydroxyquinoline and adsorption on C18 bonded silica gel.Anal. Chem. 53, 738–739.Google Scholar
  27. Whitfield M. and Turner D.R. (1987) The role of particles in regulating the composition of seawater. InAquatic Surface Chemistry (ed. W. Stumm), Chap. 17, pp. 457–493. Wiley, New York.Google Scholar
  28. Xue H.-B. and Sigg L. (1994) Zinc speciation in lake waters and its determination by ligand exchange with EDTA and differential pulse anodic stripping voltammetry.Anal. Chim. Acta 284, 505–515.Google Scholar
  29. Xue H.-B., Kistler D. and Sigg L. (1995) Competition of copper and zinc for strong ligands in a eutrophic lake.Limnol. Oceanogr. 40, 1142–1152.Google Scholar
  30. Zweifel H.R. (1992) Zinkspeziierung in einem eutrophen Fliessgewässer am Beispiel der Glatt. Diploma work, ETH Zürich.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Laura Sigg
    • 1
  • David Kistler
    • 1
  • Markus M. Ulrich
    • 1
  1. 1.Swiss Federal Institute for Environmental Science and Technology (EAWAG)DübendorfSwitzerland

Personalised recommendations