Skip to main content

Lowest weight representations of some infinite dimensional groups on fock spaces

Abstract

The results of Kashiwara and Vergne on the decomposition of the tensor products of the ‘Segal-Shale-Weil representation’ are extended to the infinite dimensional case and give all unitary lowest weight representations. Our methods are basically algebraic. When restricted to the finite dimensional case, they yield a new proof.

This is a preview of subscription content, access via your institution.

References

  1. SegalG. B.: Unitary representations of some infinite dimensional groups,Commun. Math. Phys. 80 (1981), 301–342.

    Google Scholar 

  2. CareyA. L. and RuijsenaarsS. N. M.: On fermion gauge groups, current algebras and Kac-Moody algebras,Acta Appl. Math. 10 (1987), 1–86.

    Google Scholar 

  3. ShaleD.: Linear symmetries of free boson fields,Trans. Amer. Math. Soc. 103 (1962), 149–167.

    Google Scholar 

  4. SchroerB., SeilerR., and SwiecaJ.: Problems of stability for quantum fields in external time-dependent potentials,Phys. Rev. D2 (1970), 2927–2937.

    Google Scholar 

  5. RuijsenaarsS. N. M.: On Bogoliubov transformations II,Ann. of Phys. 116 (1978), 105–134.

    Google Scholar 

  6. MacdonaldI. G.:Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1979.

    Google Scholar 

  7. KashiwaraM. and VergneM.: On the Segal-Shale-Weil representations and harmonic polynomials,Invent. Math. 44 (1978), 1–47.

    Google Scholar 

  8. JakobsenH.: On singular holomorphic representations,Invent. Math. 62 (1980), 67–78.

    Google Scholar 

  9. EnrightT. and ParthasarathyR.: A proof of a conjecture of Kashiwara and Vergne, in J. Carmona and M. Vergne,Non Commutative Harmonic Analysis and Lie Groups, Lecture Notes in Mathematics 880, Springer-Verlag, Berlin, 1981, pp. 74–90.

    Google Scholar 

  10. EnrightT., HoweR., and WallachN.: A classification of unitary highest weight modules, in P. C.Trombi (ed.),Representation Theory of Reductive Groups, Birkhäuser-Verlag, Boston, 1983, pp. 97–143.

    Google Scholar 

  11. JakobsenH.: The last possible place of unitarity for certain highest weight modules,Math. Ann. 256 (1981), 439–447.

    Google Scholar 

  12. JakobsenH.: Hermitian symmetric spaces and their unitary highest weight modules,J. Funct. Anal. 52 (1983), 385–412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, M.U. Lowest weight representations of some infinite dimensional groups on fock spaces. Acta Appl Math 18, 59–84 (1990). https://doi.org/10.1007/BF00822205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00822205

AMS subject classifications (1980)

  • 22E65
  • 22E70

Key words

  • Highest weight modules
  • CCR algebras
  • representation theory