Skip to main content
Log in

Effect of nonlinearity of gas mixtures on the process of their partition by thermal diffusion

  • Published:
Journal of engineering physics Aims and scope

Abstract

Under consideration is the effect of nonideality of the components in a gas mixture on the process of their separation by thermal diffusion. It is demonstrated that in the expressions for the heat flux and the mass flux, the thermodiffusion ratio and the characteristic of diffusional thermal conductivity the effect of nonideality appears in the heat of mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

p:

pressure

ρ:

density

\(\bar \iota _i \) :

length of the mean free path for molecules during transport of particles

\(\bar \iota '_i \) :

length of the mean free path for particles during a transfer of the mean velocity

n:

molecule concentration

M:

molecular weight

I:

particle flux

J:

mass flux

m:

mass of a molecule

t:

time

Dij :

coefficient of interdiffusion for a binary mixture

D Ti :

coefficient of thermal diffusion

KT :

thermodiffusion ratio

αT :

thermodiffusion constant

xi :

molar fraction of the i-th component in the mixture ϕ(r), intermolecular interaction potential

r:

intermolecular distance

\(_\Omega \left( {\iota , s} \right)*\) :

collision integrals

T:

temperature

T* :

referred temperature

R:

universal gas constant

k:

Boltzmann constant

Ñ:

Avogadro's number

v:

mean velocity of molecules

¯V:

diffusion rate

λi, trans :

thermal conductivity associated with translatory degrees of freedom

fi(r, v, t):

velocity distribution function of molecules

η:

viscosity

μi :

chemical potential of the i-th component

ci :

mass fraction

λo :

thermal conductivity at the initial instant of time

λ :

thermal conductivity in the steady state

λDT:

diffusional component of thermal conductivity

g and h:

molar thermodynamic functions

¯g and ¯h:

specific thermodynamic functions

cp :

specific heat

Jq :

heat flux

J′q :

reduced heat flux

B:

second virial coefficient

U* :

transport energy

β:

coefficient of thermal expansion

β′:

coefficient of isothermal compression

fi :

activity coefficient for the i-th mixture component

Literature cited

  1. K. Jones and W. Ferry, Separation of Isotopes by the Method of Thermal Diffusion [Russian translation], IL, Moscow (1947).

    Google Scholar 

  2. L. S. Kotousov, Thermal Diffusion — A Method of Studying Nonideal Systems [in Russian], Nauka, Leningrad (1973).

    Google Scholar 

  3. E. A. Mason and T. H. Spurling, The Virial Equation of State, Pergamon (1970).

  4. K. E. Grue and T. L. Ibbs, Thermal Diffusion in Gases [Russian translation], GITTL, Moscow (1956).

    Google Scholar 

  5. M. F. Laranjeira, “An elementary theory of thermal and pressure diffusion in gaseous binary and complex mixtures, Part 1: General theory,” Physica,26, 409–416 (1960).

    Google Scholar 

  6. M. F. Laranjeira, “An elementary theory of thermal and pressure diffusion in gaseous binary and complex mixtures, Part 2: Binary mixtures with experimental comparison,” Physica,26, 417–430 (1960).

    Google Scholar 

  7. M. F. Laranjeira, “Experimental and theoretical thermal diffusion factors in gaseous mixtures: ternary mixtures,” Physica,26, 431–439 (1960).

    Google Scholar 

  8. E. Whalley and E. R. S. Winter, “The elementary theory of thermal diffusion,” Trans. Faraday Soc.,46, 517 (1950).

    Google Scholar 

  9. S. Chapman, “On approximate theories of diffusion phenomena,” Phil. Mag.,5, 630 (1928).

    Google Scholar 

  10. T. N. Abramenko and E. A. Shashkov, “Thermal diffusion in gas mixtures,” Inzh.-Fiz. Zh.,36, No. 4, 676–684 (1979).

    Google Scholar 

  11. S. K. Loyalka, “Thermal transpiration in a cylindrical tube,” Phys. Fluids,12, No. 11, 2301 (1969).

    Google Scholar 

  12. S. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform Gases, Cambridge Univ. Press (1970).

  13. J. O. Hirschfelder et al., Molecular Theory of Gases and Liquids, Wiley (1964).

  14. B. A. Kalinin, P. E. Suetin, and A. É. Loiko, “Intermolecular forces and kinetic characteristics of gases,” in: Diffusion in Gases and Liquids [in Russian], Alma-Ata (1972), pp. 5–10.

  15. L. Monchick, “Equivalence of the Chapman-Enskog theory and the mean-free-path theory of gases,” Phys. Fluids,5, 1393 (1962).

    Google Scholar 

  16. L. Monchick and E. A. Mason, “Free-flight theory of gas mixtures,” Phys. Fluids,10, No. 7, 1377–1390 (1967).

    Google Scholar 

  17. V. P. Belousov and A. G. Morachevskii, Heat of Mixing for Liquids [in Russian], Khimiya, Leningrad (1970).

    Google Scholar 

  18. I. Prigogine and R. Defey, Chemical Thermodynamics [Russian translation], Novosibirsk (1966).

  19. B. N. Zamskii, “Molecular theory of transport in multicomponent liquid mixtures,” in: Transport Processes in Gases, Liquids, and Solids [in Russian], Izd. Inst. Teplo-MassoObmena Akad. Nauk BSSR, Minsk (1979), pp. 1–5.

    Google Scholar 

  20. S. R. De Groot, Thermodynamics of Irreversible Processes [Russian translation], Mir, Moscow (1956).

    Google Scholar 

  21. T. N. Abramenko, B. A. Shashkov, O. A. Kolenchits, and A. F. Zolotukhina, “Nonsteadystate of heat and mass transport processes in binary gas mixtures,” Inzh.-FIz. Zh.,40, No. 4, 726–731 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 40, No. 5, pp. 829–839, May, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramenko, T.N., Shashkov, E.A. & Zolotukhina, A.F. Effect of nonlinearity of gas mixtures on the process of their partition by thermal diffusion. Journal of Engineering Physics 40, 506–515 (1981). https://doi.org/10.1007/BF00822116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00822116

Keywords

Navigation