Journal of engineering physics

, Volume 41, Issue 3, pp 1040–1048 | Cite as

Critical parameters of pure substances. I. Hydrocarbons

  • E. S. Barkan


Statistical Physic Hydrocarbon Critical Parameter Pure Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, Halsted Press (1975).Google Scholar
  2. 2.
    Handbook on Chemistry [in Russian], Khimiya, Leningrad (1971).Google Scholar
  3. 3.
    V. P. Glushko (ed.), Thermodynamic Properties of Individual Substances [in Russian], Vol. 2, Nauka, Moscow (1979).Google Scholar
  4. 4.
    A. P. Kudchadker, G. H. Alani, and B. J. Zwolinski, “The critical constants of organic substances,” Chem. Rev.,68, 659–735 (1968).Google Scholar
  5. 5.
    Technical Data Book, Petroleum Refining, 2nd ed., API, Washington (1971), Chap. 1.Google Scholar
  6. 6.
    A. A. Vasserman and V. A. Rabinovich, Thermophysical Properties of Air and Its Components [in Russian], Standartov, Moscow (1968).Google Scholar
  7. 7.
    S. L. Rivkin and T. S. Akhundov, “Determination of the critical parameters of normal and heavy water,” Teplofiz. Vys. Temp.,1, 329–337 (1963).Google Scholar
  8. 8.
    Ya. Z. Kazavchinskii and V. I. Kudashev, “Problem of determining the critical density of a real gas from data on the saturation state,” Inzh.-Fiz. Zh.,5, No. 4, 31–34 (1962).Google Scholar
  9. 9.
    E. S. Barkan, “On the validity of the rectilinear diameter rule,” Zh. Fiz. Khim.,54, 235–236 (1980).Google Scholar
  10. 10.
    A. J. Vennix, T. W. Leland, Jr., and R. Kobayashi, “Low-temperature volumetric properties of methane,” J. Chem. Eng. Data,15, 238–243 (1970).Google Scholar
  11. 11.
    V. Jansoone, H. Gielen, and J. De Boelpaep, “The pressure-temperature volume relationship of methane near the critical point,” Physica,46, 213–221 (1970).Google Scholar
  12. 12.
    J. D. Olson, “The refractive index and Lorenz-Lorentz function of fluid methane,” J. Chem. Phys.,63, 474–484 (1975).Google Scholar
  13. 13.
    B. E. Gammon and D. R. Douslin, “The velocity of sound and heat capacity in methane from near-critical to subcritical conditions and equation-of-state implications,” J. Chem. Phys.,64, 203–218 (1976).Google Scholar
  14. 14.
    J. V. Sengers and J. M. H. Levelt Sengers, in: Progress in Liquid Physics, C. A. Croxton (ed.), New York (1977), pp. 103–174.Google Scholar
  15. 15.
    B. J. Acherson and H. J. M. Hanley, “The thermal diffusivity of methane in the critical region,” Chem. Phys. Lett.,53, 596–598 (1978).Google Scholar
  16. 16.
    N. E. Khazanova and E. E. Sominskaya, “Volume behavior of ethane near its critical point,” Zh. Fiz. Khim.,45, 160–161 (1971).Google Scholar
  17. 17.
    V. M. Miniovich and G. A. Sorina, “P-V-T-N relations in dilute solutions of propane in ethane near the critical point of ethane,” Zh. Fiz. Khim.,45, 552–555 (1971).Google Scholar
  18. 18.
    L. A. Bulavin, Yu. M. Ostanevich, A. P. Simkina, and A. V. Strelkov, “Density of ethane near the vapor-liquid critical point,” Ukr. Fiz. Zh.,16, 90–98 (1971).Google Scholar
  19. 19.
    A. I. Voronel', V. G. Gorbunova, V. A. Smirnov, et al., “Thermodynamic quantities of pure liquids and applicability of asymptotic laws near the critical point,” Zh. Eksp. Teor. Fiz.,63, 964–980 (1972).Google Scholar
  20. 20.
    D. R. Douslin and R. H. Harrison, “Pressure, volume, temperature relations of ethane,” J. Chem. Thermodyn.,5, 491–512 (1973).Google Scholar
  21. 21.
    H. J. Strumf, A. F. Gollings, and G. J. Pings, “Viscosity of xenon and ethane in the critical region,” J. Chem. Phys.,60, 3109–3123 (1974).Google Scholar
  22. 22.
    T. A. Berestov and S. B. Kiselev, “Possibility of joining the scale equation of state and the virial expansion,” Teplofiz. Vys. Temp.,17, 1202–1209 (1979).Google Scholar
  23. 23.
    A. K. Pal, G. A. Pope, Y. Arai, N. F. Canakam, and R. Kobayashi, “Experimental P-V-T relations for saturated and compressed fluid ethane,” J. Chem. Eng. Data,21, 394–397 (1976).Google Scholar
  24. 25.
    G. S. Straty and R. Tsumura, “PVT and vapor pressure measurements on ethane,” J. Res. NBS,80A, 35–39 (1976).Google Scholar
  25. 25.
    P. Sliwinski, “Die Lorenz-Lorentz funktion von damfformigen und flussigen ätan, propan, und butan,” Z. Phys. Chem. (Frankfurt am Main),63, 262–279 (1969).Google Scholar
  26. 26.
    M. R. Moldover, “Visual observation of the critical temperature and density of CO2 and C2H4,” J. Chem. Phys.,61, 1766–1777 (1974).Google Scholar
  27. 27.
    D. R. Douslin and R. H. Harrison, “P, V, T relation of ethylene,” J. Chem. Thermodyn.,8, 301–330 (1976).Google Scholar
  28. 28.
    N. J. Trappeniers, T. Wassenaar, and G. J. Wolkers, “Isotherms and thermodynamic properties of ethylene at temperatures between 0 and 150°C and at densities up to 500 amagat,” Physica,82A, 305–311 (1976).Google Scholar
  29. 29.
    V. V. Altunin, Thermophysical Properties of Carbon Dioxide [in Russian], Standartov, Moscow (1975).Google Scholar
  30. 30.
    J. R. Barber, Ph. D. Thesis, Ohio State University, Columbus, Ohio (1968).Google Scholar
  31. 31.
    A. H. N. Mousa, W. B. Kay, and A. Kreglewski, “The critical constants of binary mixtures of certain perfluoro-compounds with alkanes,” J. Chem. Thermodyn.,4, 301–311 (1972).Google Scholar
  32. 32.
    A. H. N. Mousa, “The physical properties of highly purified samples of propane and nhexane,” J. Chem. Thermodyn.,9, 1063–1065 (1977).Google Scholar
  33. 33.
    M. A. Anisimov, “Investigation of critical phenomena in liquids,” Usp. Fiz. Nauk,114, 249–294 (1974).Google Scholar
  34. 34.
    J. F. Ely and R. Kobayashi, “Isochoric pressure-volume-temperature measurements for compressed liquid propane,” J. Chem. Eng. Data,23, 221–223 (1978).Google Scholar
  35. 35.
    W. M. Haynes and M. J. Hiza, “Measurements of the ortobaric liquid densities of methane, ethane, propane, isobutane, and normal butane,” J. Chem. Thermodyn.,9, 179–187 (1977).Google Scholar
  36. 36.
    H. P. Clegg and J. S. Rowlinson, “The physical properties of some fluorine compounds and their solutions,” Trans. Faraday Soc.,51, 1333–1340 (1955).Google Scholar
  37. 37.
    D. C.-K. Lin, I. H. Silberberg, and J. J. McKetta, “Volumetric behavior, vapor pressure, and critical properties of cyclopropane,” J. Chem. Eng. Data,15, 483–491 (1970.).Google Scholar
  38. 38.
    Yu. F. Voinov, N. V. Pavlovich, and D. L. Timrot, “Tensometric method for measuring densities of equilibrium phases on the saturation line,” Khim. Promyshl. Ukr., No. 3, 51–55 (1967).Google Scholar
  39. 39.
    A. Michels, T. Wassenaar, P. Louwerse, R. J. Lunbeck, and G. J. Wolkers, “Isotherms and thermodynamical functions of propane at temperatures between 25 and 150°C and at densities up to 340 amagat,” Physica,19, 287–297 (1953).Google Scholar
  40. 40.
    J. F. Connolly, “Ideality of n-butane: isobutane solutions,” J. Phys. Chem.,66, 1082–1086 (1962).Google Scholar
  41. 41.
    A. E. Jones and W. B. Kay, “The phase and volumetric relations in the helium-butane system,” AIChE J.,13, 717–720 (1967).Google Scholar
  42. 42.
    W. B. Kay, “Pressure-volume-temperature relations for n-butane,” Ind. Eng. Chem.,32, 358–360 (1940).Google Scholar
  43. 43.
    J. A. Beattie, D. G. Edwards, and S. Marple, “The vapor pressure orthobaric liquid density and critical constants of isobutane,” J. Chem. Phys.,17, 576–577 (1949).Google Scholar
  44. 44.
    E. M. Artyukhovskaya, E. T. Shimanskaya, and Yu. I. Shimanskii, “Investigation of the thermodynamic properties of pentane near the vapor-liquid critical point,” Zh. Eksp. Teor. Fiz.,59, 688–695 (1970).Google Scholar
  45. 45.
    J. Aftienjew and A. Zawisza, “High-pressure liquid-vapor equilibria, critical state, and p(V, T, x) up to 503.15°K and 4.560 MPA for n-pentane + n-perfluoropentane,” J. Chem. Thermodyn.,9, 153–166 (1977).Google Scholar
  46. 46.
    J. A. Beattie, S. W. Eevine, and D. R. Douslin, “The vapor pressure and critical constants of normal pentane,” J. Am. Chem. Soc.,73, 4431–4432 (1932).Google Scholar
  47. 47.
    P. P. Dawson Jr., I. H. Silberberg, and J. J. McKetta, “Volumetric behavior, vapor pressure, and critical properties of neopentane,” J. Chem. Eng. Data,18, 7–15 (1973).Google Scholar
  48. 48.
    J. A. Beattie, D. R. Douslin, and S. W. Eevine, “The vapor pressure and critical constants of neopentane,” J. Chem. Phys.,19, 948–949 (1951).Google Scholar
  49. 49.
    S. C. Pak and W. B. Kay, “The critical properties of binary hydrocarbon system,” Ind. Eng. Chem. Fund.,11, 255–258 (1972).Google Scholar
  50. 50.
    A. V. M. Mandlekar, Sc. Thesis, Ohio State Univ. (1968).Google Scholar
  51. 51.
    R. M. Khera, Sc. Thesis, Ohio State Univ. (1968).Google Scholar
  52. 52.
    W. B. Kay, “The vapor pressure and saturated liquid and vapor densities of the isomeric hexanes,” J. Am. Chem. Soc.,68, 1336–1339 (1946).Google Scholar
  53. 53.
    J. A. Hugill and M. L. McClashan, “The vapor pressure from 451°K to the critical temperature and the critical temperature and critical pressure of cyclohexane,” J. Chem. Thermodyn.,10, 95–100 (1978).Google Scholar
  54. 54.
    A. K. Kobe and J. F. Matthews, “The critical properties and vapor pressure of some organic nitrogen and oxygen compounds,” J. Chem. Eng. Data,15, 182–186 (1970).Google Scholar
  55. 55.
    E. M. Artyukhovskaya, E. T. Shimanskaya, and Yu. I. Shimanskii, “Coexistence curve of heptane near the critical point,” Zh. Eksp. Teor. Fiz.,63, 2159–2164 (1972).Google Scholar
  56. 56.
    J. H. McMicking and W. B. Kay, “Vapor pressure and saturated liquid and vapor densities of the isomeric heptanes and isomeric octanes,” Proc. Am. Petrol. Inst., Sec. III,45, 75–90 (1965).Google Scholar
  57. 57.
    J. F. Connolly and G. A. Kandalic, “Saturation properties and liquid compressibilities for benzene and n-octane,” J. Chem. Eng. Data,7, 137–139 (1962).Google Scholar
  58. 58.
    A. N. Cambell and R. H. Chatterjee, “The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride,” Can. J. Chem.,47, 3893–3898 (1969).Google Scholar
  59. 59.
    L. M. Artyukhovskaya, E. T. Shimanskaya, and Yu. I. Shimanskii, “Investigation of the coexistence curve and isothermal compressibility of benzene near the liquid-vapor critical point,” Ukr. Fiz. Zh.,15, 1974–1981 (1970).Google Scholar
  60. 60.
    T. S. Akhundov and F. G. Abdullaev, “Experimental investigation of the specific volumes of benzene in the critical region and determination of the critical specific volume,” Izv. Vyssh. Uchebn. Zaved., Neft' Gaz, No. 2, 73–77 (1977).Google Scholar
  61. 61.
    T. S. Akhundov and F. G. Abdullaev, “Expérimental investigation of the temperature dependence of the saturated vapor pressure of benzene,” Zh. Fiz. Khim.,45, 1862 (1971).Google Scholar
  62. 62.
    D. Ambrose, B. E. Broderick, and R. Townsend, “The vapor pressure above the normal boiling point and the critical pressures of some aromatic hydrocarbons,” J. Chem. Soc. (A), 633–641 (1967).Google Scholar
  63. 63.
    T. S. Akhundov and F. G. Abdullaev, “investigation of the specific volumes of toluene in the critical region of the state parameters,” Izv. Vyssh. Uchebn. Zaved., Neft' Gaz, No. 1, 62–66 (1974).Google Scholar
  64. 64.
    T. S. Akhundov and F. G. Abdullaev, “Saturated vapor pressure of toluene,” Izv, Vyssh. Uchebn. Zaved., Neft' Gaz, No. 9, 44 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • E. S. Barkan
    • 1
  1. 1.All-Union Petroleum Scientific-Research Geological Exploration InstituteLeningrad

Personalised recommendations