Advertisement

Journal of engineering physics

, Volume 41, Issue 3, pp 957–960 | Cite as

Stability of fluid flow in a plane channel with uniform injection or suction through porous walls

  • V. M. Eroshenko
  • L. I. Zaichik
  • V. B. Rabovskii
Article

Abstract

The stability of laminar flow in a channel with porous walls is analyzed within the scope of the linear theory.

Keywords

Statistical Physic Fluid Flow Laminar Flow Linear Theory Porous Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notation

x

distance from entrance cross section

y

transverse coordinate measured from axis

ux, uy

longitudinal and transverse velocity components of main flow

h

half-width of channel

ν

kinematic viscosity coefficient

U0

average velocity in entrance cross section

V

suction or injection rate (positive for suction)

U=U0−Vx/h

local average velocity

ϕ

amplitude of flow disturbances

α

wave number

c

complex phase velocity of disturbances

cr

real propagation velocity of disturbances, η=y/h

Re=Uh/ν

Reynolds number of main flow

R=Vh/ν

injection or suction Reynolds number

m=U/¦V¦

injection rate parameter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. L. Ermakov, V. M. Eroshenko, A. A. Klimov, V. P. Motulevich, and Yu. N. Terent'ev, “Experimental study of flow stability for large injection,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 114–123 (1972).Google Scholar
  2. 2.
    V. M. Eroshenko, A. L. Ermakov, A. A. Klimov, V. P. Motulevich, and Yu. N. Terent'ev, “Influence of large injection on flow stability and the transition to turbulent flow,” in: Thermophysical Properties and Gas Dynamics of High-Temperature Media [in Russian], Nauka, Moscow (1972), pp. 56–64.Google Scholar
  3. 3.
    A. L. Ermakov, A. A. Klimov, and Yu. N. Terent'ev, “Evolution of disturbances on a porous surface,” in: Heat and Mass Transfer under Conditions of Injection of Various Media through Porous Surfaces [in Russian], Izd. ÉNIN, Moscow (1973), pp. 24–28.Google Scholar
  4. 4.
    K. Huesman and E. R. G. Eckert, “Untersuchungen über die laminare Strömung und den Umschlag zur Turbulenz in porösen Rohren mit gleichmassiger Einblasung durch die Rohrwand,” WärmeStoffübertragung,1, 1–2 (1968).Google Scholar
  5. 5.
    E. R. G. Eckert and W. Rodi, “Reverse transition turbulent-laminar for flow through a tube with fluid injection,” Trans. ASME, Ser. E: J. Appl. Mech.,90, No. 4, 817–819 (1968).Google Scholar
  6. 6.
    V. N. Varapaev and V. I. Yagodkin, “Flow stability in a channel with porous walls,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 91–95 (1969).Google Scholar
  7. 7.
    V. N. Varapaev, N. A. Kuril'skaya, A. A. Sviridenkov, and Yu. I. Yagodkin, “Stability of non-self-similar flows in channels with porous walls,” Tr. Mosk. Inzh.-Stroit. Inst., No. 102, 5–26 (1973).Google Scholar
  8. 8.
    A. S. Berman, “Laminar flow in channels with porous walls,” J. Appl. Phys.,24, No. 9, 1232–1236 (1953).Google Scholar
  9. 9.
    R. M. Terrill, “Laminar flow in a uniformly porous channel,” Aeronaut. Q.,15, No. 3, 299–310 (1964).Google Scholar
  10. 10.
    Yu. I. Alekseev and A. I. Korotkin, “Influence of transverse flow velocity in an incompressible boundary layer on the stability of laminar flow,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 32–36 (1966).Google Scholar
  11. 11.
    V. N. Varapaev and V. I. Yagodkin, “Stability of certain nonparallel flows of a viscous incompressible fluid in a channel,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 125–129 (1970).Google Scholar
  12. 12.
    V. A. Sapozhnikov, “Solution of the eigenvalue problem for ordinary differential equations by the ‘double-sweep’ modified Gaussian elimination method,” in: Proc. Second All-Union Sem. Numerical Methods of Viscous Fluid Mechanics [in Russian], Nauka, Novosibirsk (1969), pp. 212–219.Google Scholar
  13. 13.
    G. F. Telenin and L. P. Shchitova, “Hydrodynamics of channels with porous walls: vanishing-viscosity theory,” Nauchn. Tr. Nauchno-Issled. Inst. Mekh. Mosk. Gos. Univ., No. 30, 4–90 (1973).Google Scholar
  14. 14.
    H. Schlichting, Boundary Layer Theory (6th ed.), McGraw-Hill, New York (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. M. Eroshenko
    • 1
  • L. I. Zaichik
    • 1
  • V. B. Rabovskii
    • 1
  1. 1.G. M. Krzhizhanovskii Power InstituteMoscow

Personalised recommendations