Skip to main content
Log in

Monolithically-integrated optoelectronic circuit for ultrafast sampling of a dual-gate field-effect transistor

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An integrated optoelectronic circuit for ultrafast sampling of multi-terminal devices is described. This is achieved using optimized photoconductive switches fabricated from low-temperature-grown GaAs, monolithic integration of the device with the sampling circuit, control of the electromagnetic modes propagating on the coplanar waveguide using microfabricated airbridges, and discrimination of guided and freely-propagating modes using a novel electrooptic sampling method. As an example, the scattering parameters associated with the propagation of a picosecond pulse through one of the gates of a dual-gate heterojunction field-effect transistor are obtained at frequencies up to 300 GHz. The inter-gate capacitance is determined by measuring the electromagnetic transient coupled between the gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. K. MISHRA, A. S. BROWN, L. M. JELLOIAN, M. THOMSON, L. D. NGUYEN and S. E. ROSENBAUM,International Electron Devices Meeting Technical Digest (1989) p. 101.

  2. E. R.BROWN, J. R.SÖDERSTÖM, C. D.PARKER L. JMAHONEY K. M.MOLVAR and T. C.McGILL,Appl. Phys. Lett. 58 (1991) 2291.

    Google Scholar 

  3. R. P.SMITH, S. T.ALLEN, M.REDDY, S. C.MARTIN, J.LIU, R. E.MÜLLER and M. J. W.RODWELL,IEEE Electron. Device Lett. 15 (1994) 295.

    Google Scholar 

  4. A. A.GRINBERG and S.LURYI,IEEE Trans. Electron. Devices 40 (1993) 1512.

    Google Scholar 

  5. M.DYAKONOV and M.SHUR,Phys. Rev. Lett. 71 (1993) 2454.

    Google Scholar 

  6. D. H.AUSTON,Semiconductors and Semimetals, Vol. 28, edited by R. B.Marcus (Academic Press, San Diego, CA 1990) pp. 85.

    Google Scholar 

  7. J. A.VALDMANIS,Semiconductors and Semimetals, Vol. 28, edited by R. B.Marcus (Academic Press, San Diego, CA, 1990) p. 135.

    Google Scholar 

  8. U. D.KEIL and D. R.DYKAAR,Appl. Phys. Lett. 62 (1992) 1504.

    Google Scholar 

  9. M. Y.FRANKEL, J. F.WHITAKER and G. A.MOUROU,IEEE J. Quantum Electron. 28 (1992) 2313.

    Google Scholar 

  10. M. K.JACKSON, M. Y.FRANKEL, J. F.WHITAKER, G. A.MOUROU, D.HULIN, A.ANTONETTI, M.vanHOVE, W.deRAEDT, P.CROZAT and H.HAFDALLAH,Appl. Phys. Lett. 61 (1992) 1187.

    Google Scholar 

  11. A.ZENG, M. K.JACKSON, M.vanHOVE and W.deRAEDT,Appl. Phys. Lett. 67 (1995) 262.

    Google Scholar 

  12. M. Y.FRANKEL,IEEE Microwave Guided Wave Lett. 4 (1994) 118.

    Google Scholar 

  13. S. Y.CHOU, Y.LIU and P. B.FISCHER,Appl. Phys. Lett. 61 (1992) 477.

    Google Scholar 

  14. F. E.DOANY, D.GRISCHKOWSKY and C. C.CHI,Picosecond Electronics and Optoelectronics II (Springer Verlag, Berlin, 1987), p. 228.

    Google Scholar 

  15. M.LAMBSDORFF, J.KUHL, J.ROZENZWEIG A.AXMANN and J.SCHNEIDER,Appl. Phys. Lett. 58 (1991) 1881.

    Google Scholar 

  16. K. F.LAMPRECHT, S.JUEN, L.PALMETSHOFER and R. A.HÖPFELAppl. Phys. Lett. 59 (1991) 926.

    Google Scholar 

  17. F. W.SMITH, H. Q.LE, V.DIADIUK, M. A.HOLLIS, A. R.CALAWA, S.GUPTA, M.FRANKEL, D. R.DYKAAR, G. A.MOUROU and T. Y.HSIANG,Appl. Phys. Lett. 54 (1989) 890.

    Google Scholar 

  18. S.GUPTA, M. Y.FRANKEL, J. A.VALDMANIS, J. F.WHITAKER, G. A.MOUROU, F. W.SMITH and A. R.CALAWA,Appl. Phys. Lett. 59 (1991) 3276.

    Google Scholar 

  19. A. C.WARREN, J. M.WOODALL, J. L.FREEOUF, D.GRISCHKOWSKY, D. T.McINTURFF, M. R.MELLOCH and N.OTSUKA,Appl. Phys. Lett. 57 (1990) 1331.

    Google Scholar 

  20. E. S.HARMON, M. R.MELLOCH, J. M.WOODALL, D. D.NOLTE, N.OTSUKA and C. L.CHANG,Appl. Phys. Lett. 63 (1993) 2248.

    Google Scholar 

  21. M.KLINGENSTEIN, J.KUHL, R.NÖTZEL, K.PLOOG, J.ROSENZWEIG, C.MOGLESTUE, A.HÜLSMANN, J.SCHNEIDER and K.KÖHLER,Appl. Phys. Lett. 60 (1992) 627.

    Google Scholar 

  22. Y.CHEN, S.WILLIAMSON, T.BROCK, F. W.SMITH and A. R.CALAWA,Appl. Phys. Lett. 59 (1991) 1984.

    Google Scholar 

  23. J. K.LUO, H.THOMAS, D. V.MORGAN, D.WESTWOOD and R. H.WILLIAMS,Semicond. Sci. Technol. 9 (1994) 2199.

    Google Scholar 

  24. A. K.VERMA, J.TU, J. S.SMITH, H.FUJIOKA and E. R.WEBER,J. Electron. Mater. 22 (1993) 1417.

    Google Scholar 

  25. N. de B.BAYNES, J.ALLAM, J. R. A.CLEAVER, K.OGAWA, I.OHBU and T.MISHIMA,Inst. Phys. Conf. Ser. 136 (1994) 337.

    Google Scholar 

  26. F. W.SMITH, A. R.CALAWA, C. L.CHEN, M. J.MANFRA and L. J.MAHONEY,IEEE Electron. Device Lett. 9 (1988) 77.

    Google Scholar 

  27. M. R.MELLOCH, N.OTSUKA, J. M.WOODALL, A. C.WARREN and J. L.FREEOUFAppl. Phys. Lett. 57 (1990) 1531.

    Google Scholar 

  28. K.OGAWA, J.ALLAM, N. de B.BAYNES, J. R. A.CLEAVER, I.OHBU and T.MISHIMA,Appl. Phys. Lett. 66 (1995) 1228.

    Google Scholar 

  29. L.-W.YIN, Y.HWANG, J. H.LEE R. M.KOLBAS, R. J.TREW and U. K.MISHRA,IEEE Electron. Device Lett. 11 (1990) 561.

    Google Scholar 

  30. H. M.IBBETSON, C. R.BOLOGNESI, H.WEMAN, A. C.GOSSARD and U. K.MISHRA,Inst. Phys. Conf. Ser. 120 (1992) 37.

    Google Scholar 

  31. H. M.VanDRIEL X.-Q.ZHOU, W. W.RÜHLE, J.KUHL and K.PLOOG,Appl. Phys. Lett. 60 (1992) 2246.

    Google Scholar 

  32. B. R.BENNET, R. A.SOREF and J. A.DelALAMO,IEEE J. Quantum Electron. 26 (1990) 113.

    Google Scholar 

  33. M. Y.FRANKEL, S.GUPTA, J. A.VALDMANIS and G. A.MOUROU,IEEE Trans. Microwave Theory Tech. 39 (1991) 910.

    Google Scholar 

  34. H. J.CHENG, J. F.WHTAKER, T. M.WELLER and L. B. P.KATEHI,IEEE Trans. Microwave Theory Tech. 42 (1994) 2399.

    Google Scholar 

  35. U. D.KEIL, D. R.DYKAAR, A. F. J.LEVI, R. F.KOPF, L. N.PFEIFFER, S. B.DARACK and K. W.WEST,IEEE J. Quantum Electron. 28 (1992) 2333.

    Google Scholar 

  36. S. A.ALEXANDROU, R.SOBOLEWSKI and T. Y.HSIANG,Appl. Phys. Lett. 60 (1992) 1836.

    Google Scholar 

  37. N. H. KOSTER, S. KOBLOWSKI, R. BERTENBURG, S. HEINEN and I. WOLF,Proceedings of the 19th European Microwave Conference (London, 1989), p. 666.

  38. H.JIN and R.VAHLDIECK,IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1992), p. 207.

    Google Scholar 

  39. N. I.DIB, P. B.KATEHI and G. E.PONCHAK,IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers, New York, 1991), p. 469.

    Google Scholar 

  40. R. G.WOODHAM, R. M.JONES, D. G.HASKO, J. R. A.CLEAVER and H.AHMED,Microelectron. Engng 17 (1992) 563.

    Google Scholar 

  41. D. H.AUSTON and M. C.NUSS,IEEE J. Quantum Electron. 24 (1988) 184.

    Google Scholar 

  42. N. G.PAULTER, D. P.SINHA, A. J.GIBBS and W. R.EISENSTADT,IEEE Trans. Microwave Theory Tech. 37 (1989) 1612.

    Google Scholar 

  43. J. A.TURNER, A. J.WALLER, E.KELLY and D.PARKER,Electron. Lett. 7 (1971) 661.

    Google Scholar 

  44. C. A.LIECHTI,IEEE Trans. Microwave Theory Tech. 23 (1975) 461.

    Google Scholar 

  45. C.TSIRONIS, R.MEIERER and R.STAHLMANN,IEEE Trans. Microwave Theory Tech. 32 (1984) 249.

    Google Scholar 

  46. M.VanEXTER, C.FATTINGER and D.GRISCHKOWSKY,Opt. Lett. 14 (1989) 1128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allam, J., Baynes, N.d.B., Cleaver, J.R.A. et al. Monolithically-integrated optoelectronic circuit for ultrafast sampling of a dual-gate field-effect transistor. Opt Quant Electron 28, 875–896 (1996). https://doi.org/10.1007/BF00820154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00820154

Keywords

Navigation