Optical and Quantum Electronics

, Volume 28, Issue 7, pp 801–817 | Cite as

Two-dimensional field mapping of monolithic microwave integrated circuits using electrooptic sampling techniques

  • W. Mertin
Invited Papers


Since the invention of the electrooptic sampling technique about ten years ago, this contactless test technique based on ultra-short optical pulses has become more and more attractive to microwave engineers developing monolithic microwave integrated circuits (MMICs). The electrooptic sampling technique was originally used for circuit internal measurements of very high-speed waveforms only at discrete test points. During the last five years, a new test technique, the two-dimensional electrooptic field mapping technique, has been developed and widely used. This test technique which measures the magnitude and phase of the microwave signal gives information not only of one discrete test point but also of a greater area within the circuit and therefore insight into the microwave field distribution. This two-dimensional electrooptic field mapping technique could be a powerful tool for studying fundamental properties of wave propagation in monolithic integrated microwave devices and circuits. The aim of this paper is to present the state-of-art of this new test technique and to show an example of its application.


Microwave Communication Network Wave Propagation Field Distribution Fundamental Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.WANG, R.LAI, D. C. W.LO, D. C.STEIT, P. H.LIU, R. M.DIA, M. W.POSPIESZALSKI and J.BERENZ,IEEE Microwave & Guided Wave Lett. 5 (1995) 150.Google Scholar
  2. 2.
    S. E.ROSENBAUM, B. K.KORMANYOS, L. M.JELLOIAN, M.MATLOUBIAN, A. S.BROWN, L. E.LARSON, L. D.NGUYEN, M. A.THOMPSON, L. P. B.KATHI and G. M.REBEIZ,IEEE Trans. Microwave Theory Tech. 4 (1995) 927.Google Scholar
  3. 3.
  4. 4.
    M.MEYER,Compound Semiconductor 1(2) (1995) 21.Google Scholar
  5. 5.
    J. GOEL,IEEE MTT-S Newsletter Spring (1992) 5.Google Scholar
  6. 6.
    H. DÄMBKES and M. BERROTH,Microelectron. Eng. in press.Google Scholar
  7. 7.
    H.SCHUMACHER and E. W.STRID, inSemiconductors and Semimetals, Vol. 28, edited by R. B.Marcus (Academic Press, London, 1990) pp. 41–83.Google Scholar
  8. 8.
    J. T. L. THONG (ed.),Electron Beam Testing Technology (Plenum Press, 1993).Google Scholar
  9. 9.
    J. F.WHITAKER, J. A.VALDMANIS, M. Y.FRANKEL, S.GUPTA, J. M.CHWALEK and G. A.MOUROU,Micoelectron. Eng. 12 (1990) 369.Google Scholar
  10. 10.
    K. J.WEINGARTEN, M. J. W.RODWELL and D. M.BLOOM,IEEE J. Quantum Electron. 2 (1988) 198.Google Scholar
  11. 11.
    B. A.NECHAY, F.HO, A. S.HOU and D. M.BLOOM,J. Vac. Sci. Technol. B 13 (3) (1995) 1369.Google Scholar
  12. 12.
    A.LEYK, C.BÖHM, D. W.VAN DERWEIDE and E.KUBALEK,Electron. Lett. 13 (1995) 1046.Google Scholar
  13. 13.
    W.MERTIN, K. D.HERRMANN and E.KUBALEK,Microelectron. Eng. 12 (1990) 287.Google Scholar
  14. 14.
    J.FEHR and E.KUBALEK, inProceedings of the 22nd European Microwave Conference (Microwave Exhibitions and Publishers, Kent, 1992) p. 163.Google Scholar
  15. 15.
    A.YARIV and P.YEH,Optical Waves in Crystals. Propagation and Control of Laser Radiation (Wiley, New York, 1984) pp. 220–316.Google Scholar
  16. 16.
    K. E.MEYER and G. A.MOUROU, inPicosecond Electronics and Optoelectronics, edited by G. A.Mourou, D. M.Bloom and C. H.Lee (Springer-Verlag, New York, 1985) p. 46.Google Scholar
  17. 17.
    K. E.MEYER and G. A.MOUROU,Electron. Lett. 13 (1985) 568.Google Scholar
  18. 18.
    Y. H.LO, M. C.WU, Z. H.ZHU, S. Y.WANH and S.WANG,Appl. Phys. Lett. 25 (1987) 1791.Google Scholar
  19. 19.
    D. G.STEARNS,J. Appl. Phys. 3 (1989) 1308.Google Scholar
  20. 20.
    W. R.DONALDSON, L.KINGSLEY, M.WEINER, A.KIM and R.ZETO,J. Appl. Phys. 12 (1990) 6453.Google Scholar
  21. 21.
    L. E.KINGSLEY and W. R.DONALDSON,IEEE Trans. on Electron Devices 12 (1990) 2449.Google Scholar
  22. 22.
    W. R.DONALDSON, inProceedings of the Eighth IEEE Pulsed Power Conference, edited by R.White and K.Prestarck (IEEE, New York, 1991) p. 45.Google Scholar
  23. 23.
    M. G. LI, E. A. CHAUCHARD, C. H. LEE and H.-L. A. HUNG, inOSA Proceedings on Picosecond Electronics and Optoelectronics, edited by T. C. L. G. Sollner and J. Shah, Vol. 9 (1991) p. 54.Google Scholar
  24. 24.
    H.-L. A. HUNG, M. G. LI and C. H. LEE, inOptical Technology for Microwave Applications V, SPIE Vol. 1476 (1991) p. 276.Google Scholar
  25. 25.
    W. MERTIN, C. BÖHM, L. J. BALK and E. KUBALEK,IEEE MTT-S Digest (1992) p. 1443.Google Scholar
  26. 26.
    V. RADISIC, D. R. HJELME, Z. B. POPOVIC and A. R. MICKELSON,IEEE MTT-S Digest (1993) p. 51.Google Scholar
  27. 27.
    K. Y. CHEN, P. BIERNACKI, A. R. MICKELSOL and Z. B. POPOVIC,IEEE MTT-S Digest (1993) p. 313.Google Scholar
  28. 28.
    D. R.HJELME, M. J.YADLOWSKY and A. R.MICKELSON,IEEE Trans. Microwave Theory Tech.,6/7 (1993) 1149.Google Scholar
  29. 29.
    V.RADISIC, D. R.HJELME, A.HORRIGAN, Z. B.POPOVIC and A. R.MICKELSON,IEEE Trans. Microwave Theory Tech. 9 (1993) 1524.Google Scholar
  30. 30.
    G. DAVID, S. REDLICH, W. VON WENDORFF, G. WINGEN, S. ZUMKLEY and D. JÄGER, inProceedings of MIOP'93 (1993) p. 492.Google Scholar
  31. 31.
    G. DAVID, S. REDLICH, W. MERTIN, R. M. BERTENBURG, S. KOSSLOWSKI, F. J. TEGUDE, E . KUBALKE and D. JÄGER, inProceedings of European Microwave Conference (1993) p. 497.Google Scholar
  32. 32.
    D.JÄGER, G.DAVID and W.VONWENDORFF,Microelectron. Eng. 24 (1994) 327.Google Scholar
  33. 33.
    G.DAVID, S.REDLICH, W.MERTIN, E.KUBALEK and D.JÄGER,Microelectron. Eng. 24 (1994) 385.Google Scholar
  34. 34.
    R. A.FALK, J. C.ADAMS, C. D.CAPPS, S. G.FERRIER and J. A.KRINSKY,IEEE Trans. on Electron Devices 1 (1995) 43.Google Scholar
  35. 35.
    J. C.ADAMS, R. A.FALK, S. G.FERRIER and C. D.CAPPS,IEEE Trans. on Electron Devices 6 (1995) 1081.Google Scholar
  36. 36.
    W. MERTIN, A. LEYK, G. DAVID, R. M. BERTENBURG, S. KOSSLOWSKI, F. J. TEGUDE, I. WOLFF, D. JÄGER and E. KUBALEK,IEEE MTT-S Digest (1994) p. 1597.Google Scholar
  37. 37.
    G. DAVID, R. TEMPEL, A. ISING, Y. KALAYCI, I. WOLFF and D. JÄGER, inProceedings of 24th European Microwave Conference (1994) p. 1386.Google Scholar
  38. 38.
    D. JÄGER and G. DAVID, inProceedings of Microwaves and RF '95 (London, 1995), p. 132.Google Scholar
  39. 39.
    G. DAVID, P. SCHMITZ, S. REDLICH, J. BUSCHKE, R. KREMER and D. JÄGER, inProceedings of 1994 Asia-Pacific Microwave Conference — APMC'94 (1994) p. 149.Google Scholar
  40. 40.
    G. DAVID, W. SCHROEDER, D. JÄGER and I. WOLFF,IEEE MTT-S Digest (1995) p. 1049.Google Scholar
  41. 41.
    G. DAVID, R. KREMER, S. REDLICH and D. JÄGER, inProceedings of MIOP'95 (1995) p. 293.Google Scholar
  42. 42.
    D. JAGER and G. DAVID, inProceedings of International Symposium on Signals, Systems and Electronics ISSSE'95 (1995).Google Scholar
  43. 43.
    T. LÖFFLER, T. PFEIFER, H. G. ROSKOS, H. KURZ and D. W. VAN DER WEIDE,Microelectron. Eng. in press.Google Scholar
  44. 44.
    Y.IMAIZUMI, M.SHINAGAWA and H.OGAWA,IEEE Trans. Micowave Theory Tech. 9 (1995) 2402.Google Scholar
  45. 45.
    R. B.MARCUS (ed.),Semiconductors and Semimetals, Vol. 20,Measurement of High-Speed Signals in Solid State Devices (Academic Press, London, 1990).Google Scholar
  46. 46.
    W.MERTIN,Microelectron. Eng. 31 (1996) 365.Google Scholar
  47. 47.
    B. H. KOLNER, K. J. WEINGARTEN, M. J. W. RODWELL and D. M. BLOOM, inPicosecond Electronics and Optoelectronics, edited by G. A. Mourou, D. M. Bloom and C. H. Lee (Springer-Verlag, 1985) p. 50.Google Scholar
  48. 48.
    S.KOSSLOWSKI, N. H. L.KOSTER, R. M.BERTENBURG, S.HEINEN and I.WOLFF, inITG Fachbericht 110 (VDE-Verlag, Berlin, 1989), p. 203.Google Scholar
  49. 49.
    W.MERTIN, A.LEYK, F.TAENZLER, T.NOVAK, G.DAVID, D.JÄGER and E.KUBALEK,Microelectron. Eng. 24 (1994) 377.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • W. Mertin
    • 1
  1. 1.Sonderforschungsbereich 254, Fachbereich Elektrotechnik, Fachgebiet Werkstoffe der ElektrotechnikGerhard-Mercator-Universität DuisburgDuisburgGermany

Personalised recommendations