Skip to main content
Log in

Full wave electromagnetic simulation of electrooptic high-speed probes

  • Invited Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper outlines the process of modelling external electrooptic probes mounted on coplanar waveguides (CPW). The techniques used to describe the electromagnetic properties of the external probes are the finite difference time domain (FDTD) method and the finite difference transmission line method (FDTLM). These full wave techniques are time domain in nature that must be Fourier transformed to describe important frequency domain characteristics such as scattering parameters. The optical retardation of the probe is related to the full wave analysis through a commonly used grid size that results in a generalized basis for a complete electrooptic system analysis including a unique definition of an electrooptic transfer function,H(ω). Following the field simulation, the properties of the probe (invasiveness, retardation, signal distortion and group delay) are presented. Procedures for optimizing models for probe tips are discussed and related to a first-order model that has been developed. The results indicate that these probes can be simulated successfully on moderately sized Unix work stations and that the optimization of probe models must include the full wave simulation in the definition of the necessary gradients for the optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.SHINAGAWA and T.NAGATSUMA,IEEE Trans. Instrumentation & Measurement 43 (1994) 843.

    Google Scholar 

  2. J. A.VALDMANIS, G.MOUROU and C. W.GABEL,Appl. Phys. Lett. 41 (1982) 211.

    Google Scholar 

  3. K. J.WEINGARTEN, M. J. W.RODWELL and D. M.BLOOM,IEEE J. Quantum Electron. QE-24 (1988) 198.

    Google Scholar 

  4. D.CONN, X.WU, J.SONG and K.NICKERSON, inIEEE MTT-S International Microwave Symp. Dig. (Institute of Electrical and Electronic Engineers, MTT, Atlanta, GA, 1993) p. 221.

    Google Scholar 

  5. K. S.YEE,IEEE Trans. Antennas Propagat. AP-14 (1966) 302.

    Google Scholar 

  6. R. H.VOELKER and R. J.LOMAX,IEEE Trans. Microwave Theory Technol. 38 (1990) 302.

    Google Scholar 

  7. X.WU, D.CONN, J.SONG and K.NICKERSON,IEEE/OSA J. Lightwave Technol. 11 (1993) 448.

    Google Scholar 

  8. A.YARIV and P.YEH,Optical Waves in Crystals (Wiley, New York, 1982).

    Google Scholar 

  9. D. M.POZAR,Microwave Engineering (Addison-Wesley, Massachusetts, 1990).

    Google Scholar 

  10. M. Y.FRANKEL, S.GUPTA, J. A.VALDMANIS and G. A.MOUROU,IEEE Trans. Microwave Theory Technol. 39 (1991) 910.

    Google Scholar 

  11. G.HASNAIN, A.DIENES and J. R.WINNERY,IEEE Trans. Microwave Theory Technol. 34 (1986) 738.

    Google Scholar 

  12. S. S.BEDAIR and I.WOLFF,IEEE Trans. Microwave Theory Technol. 40 (1992) 41.

    Google Scholar 

  13. J. M.WIESENFELD,IBM J. Res. Develop. 34 (1990) 141.

    Google Scholar 

  14. K. Y.FORSYTH,SPIE 795 (1987) 317.

    Google Scholar 

  15. M. Y.FRANKEL, J. K.WHITAKER, G. A.MOUROU and J. A.VALDMANIS,IEEE Microwave & Guided Wave Lett.1 (1991) 60.

    Google Scholar 

  16. M. Y.FRANKEL, J. F.WHITAKER, G. A.MOUROU and J. A.VALDMANIS,Solid-State Electron. 35 (1992) 325.

    Google Scholar 

  17. D.CONN, X.WU, J.SONG and K.NICKERSON, inIEEE MIT-S International Microwave Symp. Dig. (Institute of Electrical and Electronic Engineers, MTT, Albuquerque, NM, 1992) p. 665.

    Google Scholar 

  18. M.MORGAN and K. K.MEI,IEEE Trans. Antennas Propagat. AP-36 (1988) 1096.

    Google Scholar 

  19. R. F.HARRINGTON,Field Computation by Moment Methods (Macmillan, New York, 1968).

    Google Scholar 

  20. X.ZHANG and K. K.MEI,IEEE Trans. Microwave Theory Technol. 36 (1988) 1775.

    Google Scholar 

  21. G. C.LIANG, Y. W.LIU and K. K.MEI,IEEE Trans. Microwave Theory Technol. 37 (1989) 1949.

    Google Scholar 

  22. X.ZHANG, J. Y.FANG, K. K.MEI and Y. W.LIU,IEEE Trans. Microwave Theory Technol. 36 (1988) 263.

    Google Scholar 

  23. J.LITVA, C.WU, K. L.WU, and J.CHEN,IEEE Microwave and Guided Wave Lett. 3 (1993) 438.

    Google Scholar 

  24. C.WU, K. L.WU, Z. Q.BI and J.LITVA,IEEE Trans. Antennas Propagat. 40 (1992) 526.

    Google Scholar 

  25. B.ENGQUIST and A.MAJDA,Math. Comp. 31 (1977) 629.

    Google Scholar 

  26. G.MUR,IEEE Trans. Microwave Theory Technol. 29 (1981) 1073.

    Google Scholar 

  27. X.WU, D.CONN, J.SONG and K.NICKERSON,Electron. Lett. 28 (1992) 2229.

    Google Scholar 

  28. X.WU, D.CONN, J.SONG and K.NICKERSON, inAP International Symposium, URSI Meeting and EMP Meeting Joint Symposia (Institute of Electrical and Electronic Engineers, Chicago, IL, July 1992) p. 49.

    Google Scholar 

  29. P. B.JOHNS and R. L.BEURLE,Proc. IEE 118 (1971) 1203.

    Google Scholar 

  30. S.AKHTARZAD and P. B.JOHNS,Proc. IEE 122 (1975) 1344.

    Google Scholar 

  31. S.AKHTARZAD and P. B.JOHNS,IEEE Trans. Microwave Theory Technol. MTT-23 (1975) 990.

    Google Scholar 

  32. W. J. R.HOEFER,IEEE Trans. Microwave Theory Technol. MTT-33 (1985) 882.

    Google Scholar 

  33. P. B.JOHNS and M.O'BRIEN,The Radio and Electronic Engineer 50 (1980) 59.

    Google Scholar 

  34. H.JIN and R.VAHLDIECK,IEEE Trans. Microwave Theory Technol. 40 (1992) 2207.

    Google Scholar 

  35. P.RUSSER, P. P. M.SO and W. J. R.HOEFER,IEEE Microwave and Guided Wave Lett. 1 (1991) 10.

    Google Scholar 

  36. M.ZHANG, Z.BI and J.LITVA, inAP Second International Symposium Technical Digest (Institute of Electrical and Electronic Engineers, Ann Arbor, MI, June 1993), p. 550.

    Google Scholar 

  37. A.YARIV,Optical Electronics, 4th edn (Saunders College, Philadelphia, 1991).

    Google Scholar 

  38. T.NAGATSUMA, T.SHIBATA, E.SANO and A.IWATA,J. Appl. Phys. 66 (1989) 4001.

    Google Scholar 

  39. M.SHINAGAWA and T.NAGATSUMA,Electron. Lett. 26 (1990) 1341.

    Google Scholar 

  40. J. A.VALDMANIS and S. S.PEI,Picosecond Electronics and Optoelectronics II (Springer-Verlag, New York, 1987).

    Google Scholar 

  41. M. S. HEUTMAKER, G. T. HARVEY, D. G. CRUICKSHANK and P. E. BECHTOLD, inDigest of the 17th International Conference on Quantum Electronics (IQEC, 1990) p. 50.

  42. B. H.KOLNER and D. M.BLOOM,IEEE J. Quantum Electron. QE-22 (1986) 79.

    Google Scholar 

  43. B. P.LATHI,Signals, Systems and Controls, (Index Educational Publishers, New York, 1974).

    Google Scholar 

  44. B. P.LATHI,Engineering Optics (Spring-Verlag, Heidelberg, 1985).

    Google Scholar 

  45. J.SONG, D.CONN, X.WU and K.NICKERSON,Microwave and Optical Technol. Lett. 6 (1993) 493.

    Google Scholar 

  46. J. W.BANDLER and S. H.CHEN,IEEE Trans. Microwave Theory Technol. 36 (1988) 424.

    Google Scholar 

  47. J. W.BANDLER, R. M.BIERNACKI, S. H.CHEN, D. G.SWANSONJR and S.YE,IEEE Trans. Microwave Theory Technol. 42 (1994) 1353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conn, D., Wu, H.X. & Zhang, M. Full wave electromagnetic simulation of electrooptic high-speed probes. Opt Quant Electron 28, 765–782 (1996). https://doi.org/10.1007/BF00820148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00820148

Keywords

Navigation