Soviet Physics Journal

, Volume 13, Issue 12, pp 1636–1640 | Cite as

Method of solving diffusion boundary-value problems for a region with a boundary moving in accordance with an arbitrary law

  • B. Ya. Lyubov
  • É. M. Kartashov
Article
  • 34 Downloads

Abstract

A general method is proposed for solving the boundary-value problem of the diffusion equation in a limited region with a boundary that moves in accordance with an arbitrary law. The method is used to solve the first linear diffusion problem. Other boundary-value problems can be solved in similar fashion.

Keywords

Diffusion Equation Limited Region Diffusion Problem Linear Diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. Ya. Lyubov, Kinetic Theory of Phase Transitions, Metallurgiya (1969).Google Scholar
  2. 2.
    B. Ya. Lyubov, Dokl. Akad. Nauk SSSR,68, No. 5 (1949).Google Scholar
  3. 3.
    V. T. Borisov, B. Ya. Lyubov, and D. E. Temkin, Dokl. Akad. Nauk SSSR, No. 2, 104 (1955).Google Scholar
  4. 4.
    B. Ya. Lyubov and D. E. Temkin, in: Crystal Growth [in Russian], Vol. 3, Izd. AN SSSR (1961).Google Scholar
  5. 5.
    D. E. Temkin, Inzh.-Fiz. Zh.,5, No. 4 (1962).Google Scholar
  6. 6.
    B. I. Birman and B. L. Timan, Dokl. Akad. Nauk SSSR,1061, No. 1 (1965).Google Scholar
  7. 7.
    G. M. Bartenev and Yu. S. Zuev, Strength and Damage of Highly-Elastic Materials [in Russian], Khimiya (1964).Google Scholar
  8. 8.
    G. M. Bartenev, I. V. Razumovskaya, and É. M. Kartashov, Fiziko-Khimicheskaya Mekhanika, No. 2 (1967).Google Scholar
  9. 9.
    G. M. Bartenev, I. V. Razumovskaya, and E. M. Kartashov, Fiziko-Khimicheskaya Mekhanika, No. 5 (1967).Google Scholar
  10. 10.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka (1966).Google Scholar
  11. 11.
    É. G. Coursat, A Course in Mathematical Analysis, Vol. 1 (1934), p. 3.Google Scholar
  12. 12.
    B. Ya. Lyubov, Dokl. Akad. Nauk SSSR,57, No. 6 (1947).Google Scholar
  13. 13.
    É. M. Kartashov, Teplofiz. Vys. Temp., No. 2 (1967).Google Scholar
  14. 14.
    É. M. Kartashov and I. V. Eazumovskaya, Izv. VUZ. Fiz., No. 6 (1967).Google Scholar
  15. 15.
    V. I. Kval'vasser and Ya. F. Rutner, Inzh.-Fiz. Zh.,8, No. 4 (1965).Google Scholar
  16. 16.
    V. I. Kval'vasser and Ya. F. Rutner, Dokl. Akad. Nauk SSR,156, No. 6 (1964).Google Scholar
  17. 17.
    G. A. Grinberg, Zh. Tekh. Fiz.,21, No. 3 (1951).Google Scholar
  18. 18.
    E. M. Kartashov and G. M. Bartenev, Izv. VUZ. Fiz., No. 2 (1969).Google Scholar
  19. 19.
    E. M. Kartashov and G. M. Bartenev, Izv. VUZ. Fiz., No. 3 (1969).Google Scholar
  20. 20.
    D. V. Redozubov, Zh. Tekh. Fiz.,27, No. 9 (1957).Google Scholar
  21. 21.
    D. V. Redozubov, Inzh.-Fiz. Zh., No. 1 (1959).Google Scholar
  22. 22.
    D. V. Redozubov, Zh. Tekh. Fiz.,30, No. 6 (1960).Google Scholar
  23. 23.
    D. V. Redozubov, Zh. Tekh. Fiz.,32, No. 5 (1962).Google Scholar
  24. 24.
    M. V. Antimirovand Z. I. Geller, Inzh.-Fiz. Zh.,7, No. 9 (1964).Google Scholar
  25. 25.
    Chem Wen H., Proc. IEEE,55, No. 1 (1967).Google Scholar
  26. 26.
    G. A. Martynov, Zh. Tekh. Fiz.,25, No. 10 (1955).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1973

Authors and Affiliations

  • B. Ya. Lyubov
    • 1
  • É. M. Kartashov
    • 1
  1. 1.V. I. Lenin Moscow State Pedagogical InstituteUSSR

Personalised recommendations