Skip to main content
Log in

New potential DNA intercalators of the carbazole series from indole-2,3-quinodimethanes: Synthesis, crystal structure, and molecular modeling with a watson-crick mini-helix

Neue potentielle DNA-Interkalatoren der Carbazol-Reihe aus Indol-2,3-chinodimethanen: Synthese, Kristallstruktur und Molecular Modeling mit einer Watson-Crick Minihelix

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

1-Alkylpyrano[3,4-b]indol-3-ones3 react via a Diels-Alder step with an aryne or N-phenylmaleimide to furnish the new [b]annellated carbazoles4–10 in a one-pot process. In an analogous procedure, the in situ generated N-benzoylindole-2,3-quinodimethane (13) reacted with quinones to furnish the dioxocarbazoles14–16. Compounds4–8 and14–16 with a coplanar skeleton are members of a class of potential DNA intercalators, as has been shown for5 and8 by X-ray structural analysis. On the basis of the geometries determined by X-ray crystallography, the intercalative binding of these molecules with a Watson-Crick mini-helix was predicted by molecular modeling methods.

Zusammenfassung

1-Alkylpyrano[3,4-b]indol-3-one3 reagieren über einen Diels-Alder-Schritt mit Arin oder N-Phenylmaleinimid zu [b]annellierten Carbazolen4–10 in einer Einstufenreaktion. In analoger Weise reagiert ein in situ erzeugtes N-Benzoylindol-2,3-chinodimethan13 mit Chinonen zu den Dioxocarbazolen14–16. Die Verbindungen4–8 und14–16 gehören infolge ihrer coplanaren Struktur zur Klasse potentieller DNA-Interkalatoren. Auf der Basis von Röntgenstrukturanalysen von5 und8 wird die interkalative Bindung mit einer Watson-Crick Minihelix durch Molecular Modeling vorhergesagt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht W. L., Fleming R. W., Hogan S. W., Mayer G. D. (1977) J. Med. Chem.20: 364

    Google Scholar 

  2. Tabka T. Robba M. (1988) Eur. J. Med. Chem.23: 119

    Google Scholar 

  3. Kansal V. K., Poitier P. (1986) Tetrahedron42: 2389

    Google Scholar 

  4. Pindur U. (1987) Pharm. Uns. Zeit16: 47

    Google Scholar 

  5. Larue L., Rivalle C., Muzard G., Paoletti C., Bisagni E., Paoletti J. (1988) J. Med. Chem.31: 1951; Auclair C. (1987) Arch. Biochem. Biophys.259: 1259

    Google Scholar 

  6. Lescot E., Muzard G., Markovits J., Belleney, J., Roques B. D., Le Pecq J. B. (1986) J. Med. Chem.29: 1731

    Google Scholar 

  7. Wakeling L. P. G. (1986) Medicin. Res. Rev.6: 275

    Google Scholar 

  8. Kuroda R. (1989) J. Synth. Org. Chem. (Jpn.)47: 547

    Google Scholar 

  9. Pindur U. (1980) Dtsch. Apotheker Ztg.120: 1691

    Google Scholar 

  10. Jain S. C., Bhandary K. K., Sobell H. M. (1979) J. Med. Biol.135: 813

    Google Scholar 

  11. Pindur U., Erfanian-Abdoust H. (1988) Liebigs Ann. Chem.: 803; Pindur U., Eitel M. (1990) J. Org. Chem.55: 5368

  12. Pindur U., Erfanian-Abdoust H. (1988) Chimia42: 180

    Google Scholar 

  13. Pindur U., Erfanian-Abdoust H. (1989) Liebigs Ann. Chem.: 227

  14. Review: Pindur U., Erfanian-Abdoust H. (1989) Chem. Rev.89: 1681

    Google Scholar 

  15. Pindur U., Erfanian-Abdoust H. (1989) Heterocycles29: 1709; Pindur U., Erfanin-Abdoust H. (1990) Liebigs Ann. Chem.: 771; Harber M., Pindur U. (1991) Tetrahedron47: 1925; Pinder U., Pfeuffer L., Eitel M., Rogge M., Haber M. (1991) Monatsh. Chem.122: 291

    Google Scholar 

  16. Plieninger H., Müller W., Weinert K. (1964) Chem. Ber.97: 667

    Google Scholar 

  17. Moody C. J., Shah P. (1989) J. Chem. Soc., Perkin Trans.1: 376; Moody C. J., Shah P., Knowles P. (1988) J. Chem. Soc., Perkin Trans.1: 3249

    Google Scholar 

  18. Van Doren P., Vanderzande D., Toppet S., Hoornaert G. (1989) Tetrahedron45: 6761; Van Doren P., Compernolla P., Hoornaert G. (1990) Tetrahedron46: 4023

    Google Scholar 

  19. Pindur U., Haber M. (1991) Heterocycles32: 1463

    Google Scholar 

  20. Sheldrick G. M. (1986) Programm zur Lösung von Kristallstrukturen, Göttingen

  21. Sheldrick G. M. (1975) Programs for Crystal Structure Determination, Cambridge, Version 8/1976

  22. MMX force field programme from K. E. Gilbert and J. J. Gajewski based on MM2 (Allinger, QCPE 395) and MMP1 (Allinger, QCPE 318) modified by K. Steliou, Serena Software Ltd.; this programme has implemented the Monte Carlo Metropolis algorithms

  23. Kuroda R., Sainsbury M. (1984) J. Chem. Soc., Perkin Trans.1: 1751

    Google Scholar 

  24. Maraun R., Gesh N. (1989) Biopolymers28: 835; Chen K.-X., Gresh N., Pullman B. (1987) Biopolymers26: 831, and references cited therein

    Google Scholar 

  25. Molecular modeling programme ALCHEMY II from Evans & Sutherland, Tripos Assoc., Inc., St. Louis, MO, USA

  26. Molecular modeling programme SYBYL 5.3 from Evans & Sutherland, Tripos Assoc., Inc., St. Louis, MO, USA

  27. Application of molecular mechanics calculations to nucleosides: Burkert U., Allinger N. L. (1982) Molecular Mechanics, ACS Monograph 177, American Chemical Society, Washington, DC

    Google Scholar 

  28. For the first molecular mechanics calculations on dinucleotides with ethidium salts, 9-aminoacridine, and proflavine, see: Nuss M. E., Marsh F. J., Kollman P. A. (1979) J. Am. Chem. Soc.101: 825

    Google Scholar 

  29. For a comprehensive discussion of structural aspects of nucleic acids and for a definition of torsional angles in nucleotides, see: W. Saenger W. (1988) Principles of Nucleic Acid Structure, Springer Verlag, New York. For a recent leading review based on crystallographic studies and structural aspects of nucleic acids, see: Kennard O., Hunter W. N. (1991) Angew. Chem.103: 1280; Angew. Chem. Int. Ed. Engl.30: 1245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dräger, M., Haber, M., Erfanian-Abdoust, H. et al. New potential DNA intercalators of the carbazole series from indole-2,3-quinodimethanes: Synthesis, crystal structure, and molecular modeling with a watson-crick mini-helix. Monatsh Chem 124, 559–576 (1993). https://doi.org/10.1007/BF00819524

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00819524

Keywords

Navigation