Skip to main content
Log in

Galvanomagnetic and thermomagnetic effects in compensated gallium arsenide

  • Published:
Soviet Physics Journal Aims and scope

Abstract

The kinetic effects:-Hall effect, magnetoresistance, and Nernst-Ettinghausen effect-are examined in n-type gallium arsenide having a free electron concentration at room temperature of less than 1015 cm−3.

The work was directed toward determining the dominating scattering mechanism in compensated material.

At low temperatures the scattering is predominately by impurity atoms and optical vibrations (optical phonons); at high temperatures, by acoustic phonons.

With simultaneous scattering by thermal vibrations and impurity ions, for temperatures T > 300 ° K, the second mechanism plays the basic role in the longitudinal Nernst-Ettinghausen effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Emel'yanenko and D. N. Nasledov, ZhTF28, no. 6, 1177, 1958.

    Google Scholar 

  2. O. V. Emel'yanenko and D. N. Nasledov, FTT,1, no. 6, 985, 1959.

    Google Scholar 

  3. O. V. Emel'yanenko, T. S. Lagunova, and D. N. Nasledov, FTT,2, no. 2, 192, 1960.

    Google Scholar 

  4. D. N. Nasledov, J. Appl. Phys. Suppl. to vol. 32, no. 10, 2140, 1961 (Transactions of Conference on Semiconducting Compounds, Schenectady, New York, 1961).

    Google Scholar 

  5. A. F. Kravchenko, Izv. VUZ. Fizika, no. 3, 80, 1961.

    Google Scholar 

  6. R. Barrie, F. A. Cunnell, J. T. Edmond, and I. M. Ross, Physica,20, no. 11, 1087, 1954.

    Google Scholar 

  7. L. Pincherle and J. M. Radcliffe, Collection: Advances in Physics,5, no. 19, p. 271, 1956.

    Google Scholar 

  8. A. F. Kraychenko and H. Y. Fan, FTT,5, no. 2, 660, 1963.

    Google Scholar 

  9. J. W. Allen, Nature, 187, no. 4735, 403, 1960.

    Google Scholar 

  10. C. Hilsum and A. C. Rose-Innes, Semiconducting III-V Compounds, N. Y.-London, 1961.

  11. C. H. Gooch, C. Hilsum, and B. R. Holeman, J. Appl. Phys., Suppl. to vol. 32, no. 10, 2069, 1961.

    Google Scholar 

  12. L. R. Weisberg, F. D. Rosi, and P. G. Herkart, collection: Properties of Elemental and Compound Semiconductors (Metallurgical Society Conference, Boston, 1959, V. 5), New York, p. 25, 1960.

  13. J. M. Whelan and G. H. Wheatley, J. Phys. Chem. Solids,6, nos. 2–3, 169, 1958.

    Google Scholar 

  14. H. Brooks, Collection: Advances in Electronics and Electron Physics, vol. 7, New York, p. 85, 1955.

    Google Scholar 

  15. L. R. Weisberg, F. D. Rosi, and P. G. Herkart, collection: Properties of Elemental and Compound Semiconductors (Metallurgical Society Conference, Boston, 1959, vol. 5), New York, p. 85, 1960.

  16. L. R. Weisberg, J. R. Woolston, and M. Glicksman, J. Appl. Phys., 29, no. 10, 1514, 1958.

    Google Scholar 

  17. E. M. Conwell and V. F. Weisskopf, Phys. Rev.,77, no. 3, 388, 1950.

    Google Scholar 

  18. K. B. Tolpygo, Trudy instituta fiziki AN USSR, 3, 52, 1952.

    Google Scholar 

  19. I. M. Tsidil'kovskii, Thermomagnetic Phenomena in Semiconductors [in Russian], Fizmatgiz, Moscow, 1960.

    Google Scholar 

  20. H. Ehrenreich, Phys. Rev., 120, no. 6, 1951, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchenko, A.F. Galvanomagnetic and thermomagnetic effects in compensated gallium arsenide. Soviet Physics Journal 9, 45–48 (1966). https://doi.org/10.1007/BF00818737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00818737

Keywords

Navigation