Advertisement

Soviet Physics Journal

, Volume 8, Issue 4, pp 100–102 | Cite as

Behavior of the electrical conductivity on melting in an organic semiconductor

  • P. K. Mitskevich
  • M. I. Bashmakova
Article
  • 15 Downloads

Conclusions

  1. 1.

    Semiconductor-type conduction in solid and liquid organic compounds has been demonstrated by measuring the electrical conductivity over a wide temperature range.

     
  2. 2.

    The thermal activation energies agree with those from the long-wave foot of the absorption band for napththalene, anthracene, phenanthrene, and benzanthrone in the solid state. This shows that the first excited singlet state of the molecule is involved in the dark conductivity.

     
  3. 3.

    Nitrogen heteroatoms, CH3 groups, and OH groups increase σ at 20 ° C and reduce the activation energy.

     
  4. 4.

    The conductivity increases discontinuously on melting; there is a logarithmic relation of γ = σls to melting point for all the compounds examined.

     
  5. 5.

    The thermal activation energy is linearly related to the pre-exponential conduction factor for solid and liquid organic compounds whose σ at 20 ° are in the range 10−19 to 10−15 ohm−1 cm−1.

     

Keywords

Activation Energy Electrical Conductivity Melting Point Anthracene Phenanthrene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Bashmakova, DECI Papers [in Russian], no. 29, 19, 1963.Google Scholar
  2. 2.
    V. V. Voevodskii, S. N. Solodovnikov, and V. M. Chibrikin, DAN SSSR, 129, no. 5, 1082–1084, 1959.Google Scholar
  3. 3.
    R. A. Friedel and M. Orshin, Ultraviolet Spectra of Aromatic Compounds, New York, 1951.Google Scholar
  4. 4.
    H. Inokuchi, Bull. Chem. Soc. Japan. 29, 131, 1956.Google Scholar
  5. 5.
    Yu. I. Plotnikov, FTT, 4, no. 11, 3104–3109, 1962.Google Scholar
  6. 6.
    M. Wilk, Z. f. Electrochemie, 64, 930, 1960.Google Scholar
  7. 7.
    N. V. Ril, ZhFKh, 29, 959, 1955.Google Scholar
  8. 8.
    E. O. Förster, J. Chem. Phys., 37, no. 5, 1021–1028, 1962.Google Scholar
  9. 9.
    V. L. Tal'roze and L. A. Blyumenfel'd, DAN SSSR, 135, no. 6, 1450–1452, 1960.Google Scholar
  10. 10.
    A. V. Airapetyants, R. M. Voitenko, B. E. Davydov, and V. S. Serebryannikov, Vysokomolekulyarnye soedineniya, 3, no. 12, 1961.Google Scholar
  11. 11.
    R. G. Kepler, Phys. Rev., 119, 1226, 1960.Google Scholar
  12. 12.
    O. H. Le Blanc, J. Chem. Phys., 30, no. 6, 1443–1447, 1959.Google Scholar
  13. 13.
    O. H. Le Blanc, J. Chem. Phys., 37, no. 4, 916, 1962.Google Scholar

Copyright information

© The Faraday Press, Inc. 1967

Authors and Affiliations

  • P. K. Mitskevich
    • 1
  • M. I. Bashmakova
    • 1
  1. 1.Dnepropetrovsk Engineering Construction InstituteUSSR

Personalised recommendations