Skip to main content
Log in

Chirale Erkennung bei Trisdiimin -Metallkomplexen: 2. Sind Tonminerale prochirale Adsorbentien?

Chiral recognition among trisdiimine - metal complexes: 2. Are clay minerals prochiral adsorbents?

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

Based on a review of crystal structures we propose that with trisphenanthroline complexes the racemic layer is the preferred one, but with trischelate complexes of bipyridyl and related ligands it is the enantiomeric layer. Adsorption of complex cations is fast and kinetically controlled. Intercalation up to the bilayer arrangement is energetically only feasible if the monolayer corresponds to the energetically most favourable two-dimensional packing. Hence the reported chiral recognition power of clay minerals is founded solely in the lateral interactions of the guest-complexes. The clay mineral host is acting as an anion that, while strongly modifying the structure, does promote or merely does not prevent chiral recognition between the guests in the interlayer region. The achiral clay minerals themselves do not have any chiral recognition ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. 1. Mitteilung: Breu J., Range K.-J., Herdtweck E. (1993) Monatsh. Chem.125: 119

    Google Scholar 

  2. Yamagishi A. (1981) J. Am. Chem. Soc.103: 4640

    Google Scholar 

  3. Berkheiser V. E., Mortland M. M. (1977) Clays Clay Min.25: 105

    Google Scholar 

  4. Traynor F. S. E. M. F., Mortland M. M., Pinnavaia T. J. (1978) Clays Clay Min.26(5: 318

    Google Scholar 

  5. Loeppert R. H., Mortland M. M., Pinnavaia T. J. (1979) Clays Clay Min.27(3: 201

    Google Scholar 

  6. Yamagishi A. (1987) J. Coord. Chem.16: 131

    Google Scholar 

  7. Hikita T., Tamaru K., Yamagishi A., Iwamoto T. (1989) Inorg. Chem.28: 2221

    Google Scholar 

  8. Kamat P. V., Gopidas K. R., Mukherjee T., Joshi V., Kotkar D., Pathak V. S., Ghosh P. K. (1991) J. Phys. Chem.95: 10009

    Google Scholar 

  9. Villemure G. (1991) Clays Clay Min.39(6: 580

    Google Scholar 

  10. Nakamura Y., Yamagishi A., Iwamoto T., Koga M. (1988) Clays Clay Min.36(6: 530

    Google Scholar 

  11. Joshi V., Kotkar D., Ghosh P. K. (1990) Proc. Indian Acad. Sci. (Chem. Sci.)102(3: 203

    Google Scholar 

  12. Yamagishi A. (1985) Inorg. Chem.24: 1689

    Google Scholar 

  13. Villemure G. (1990) Clays Clay Min.38(6: 622

    Google Scholar 

  14. Villemure G., Bard A. J. (1990) J. Electroanal. Chem.283: 403

    Google Scholar 

  15. Taniguchi M., Yamagishi A., Iwamoto T. (1991) Inorg. Chem.30: 2462

    Google Scholar 

  16. Villemure G. (1991) Clays Clay Min.39(6: 580

    Google Scholar 

  17. Petridis D., Falaras P., Pinnavaia T. M. (1992) Inorg. Chem.31: 115

    Google Scholar 

  18. Barrer R. M. (1989) Pure & Appl. Chem.61(11: 1903

    Google Scholar 

  19. Johannsson L., Molund M., Oskarsson Å. (1978) Inorg. Chim. Acta31: 117

    Google Scholar 

  20. Fujiwara T., Iwamoto E., Yamamoto Y. (1984) Inorg. Chem.23: 115

    Google Scholar 

  21. Baker J., Engelhardt L. M., Figgis B. N., White A. H. (1975) J. Chem. Soc. Dalton: 530

  22. Gillard R. D., Mitchell S. H. (1989) Polyhedron22(8: 2649

    Google Scholar 

  23. Goodwin H. A., Kepert D. L., Patrick J. M., Skelton B. W., White A. H. (1984) Aust. J. Chem.37: 1817

    Google Scholar 

  24. Reiff W. M., Witten E. H., Mottle K., Brennan T. F., Garafalo A. R. (1983) Inorg. Chim. Acta77: L83

    Google Scholar 

  25. Kuroda R., Mason S. F., Rodger C. D., Seal R. H. (1981) Mol. Phys.19: 131

    Google Scholar 

  26. Mason S. F. (1982) Molecular Optical Activity and the Chiral Discriminations. Cambridge University Press, Cambridge

    Google Scholar 

  27. Healy P. C., Skelton B. W., White A. H. (1983) Aust. J. Chem.36: 2057

    Google Scholar 

  28. Weiss H., Strähle J. (1984) Z. Naturforsch.39b: 1453

    Google Scholar 

  29. Rillema D. P., Jones D. J. (1979) J. Chem. Soc. Chem. Commun.: 849

  30. Constable E. C., Raithby P. R., Smit D. N. (1989) Polyhedr.8(3: 367

    Google Scholar 

  31. Stebler M., Gutiérrez A., Ludi A., Bürgi H.-B. (1987) Inorg. Chem.26: 1449

    Google Scholar 

  32. Onggo D., Rae A. D., Goodwin H. A. (1990) Inorg. Chim. Acta178: 151

    Google Scholar 

  33. Hauser A., Mäder M., Robinson W. T., Murugesan R., Ferguson J. (1987) Inorg. Chem.26: 1331

    Google Scholar 

  34. Goodwin K. V., Pennington W. T., Petersen J. D. (1989) Inorg. Chem.28: 2016

    Google Scholar 

  35. Szalda D. J., Creutz C., Mahajan D., Sutin N. (1983) Inorg. Chem.22: 2372

    Google Scholar 

  36. Lai H., Jones D. S., Schwind D. C., Rillema D. P. (1990) J. Crist. Spectr. Tes.22: 321

    Google Scholar 

  37. Posse M. E. G., Juri M. A., Agmonino P. J., Piro O. E., Negri H. A., Castellano E. E. (1984) Inorg. Chem.23: 948

    Google Scholar 

  38. Rillema D. P., Jones D. S., Woods C., Levy H. A. (1992) Inorg. Chem.31: 2935

    Google Scholar 

  39. Ferguson J., Herren F., McLaughlin G. M. (1982) Chem. Phys. Lett.89(5: 376

    Google Scholar 

  40. Ferguson J., Herren F. (1983) Chem. Phys.76: 45

    Google Scholar 

  41. Villemure G., Bazan G., Kodama H., Szabo A. G., Detellier C. (1987) Appl Clay Sci.2: 241

    Google Scholar 

  42. Taniguchi M., Kaneyoshi M., Nakamura Y., Yamagishi A., Iwamoto T. (1990) J. Phys. Chem.94: 5896

    Google Scholar 

  43. Sato H., Yamagishi A., Kato S. (1990) Clay Sci.8: 147

    Google Scholar 

  44. Sato H., Yamagishi A., Kato S. (1992) J. Phys. Chem.96: 9382

    Google Scholar 

  45. Sato H., Yamagishi A., Kato S. (1992) J. Am. Chem. Soc.114: 10933

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Der Begriff Intersalation wird in dieser Arbeit für die Einlagerung von Kationen unter Mitnahme der Anionen in den Zwischenschichtraum von Smectiten verwendet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breu, J., Range, K.J. Chirale Erkennung bei Trisdiimin -Metallkomplexen: 2. Sind Tonminerale prochirale Adsorbentien?. Monatsh Chem 125, 141–151 (1994). https://doi.org/10.1007/BF00818161

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00818161

Keywords

Navigation