Soviet Physics Journal

, Volume 14, Issue 4, pp 486–491 | Cite as

Dislocation retardation due to the destruction of short-range order in the L12 superstructure

  • É. V. Kozlov
  • L. E. Popov
  • A. E. Ginzburg


The magnitude and temperature dependence of the dislocation retardation due to the destruction of short-range order are calculated in the quasichemical approximation. The atomic interaction in two coordination spheres and dislocation slip in cubic and octahedral planes are taken into account. The retardation stress for the first superdislocation is essentially the same in these planes for T < T k (where T k is the phase-transition temperature), while the retardation stress for subsequent superdislocations is much lower, so large planar accumulations of superdislocations may arise. The retardation stress is maximal at T = T k , and for T > T k the first dislocations should move in pairs. Comparison of the experimental cleavage stresses with calculated values shows that, by itself, superdislocation retardation due to correlation destruction cannot explain the behavior of the yield point.


Yield Point Coordination Sphere Atomic Interaction Dislocation Slip Planar Accumulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. C. Fisher, Acta Met.,2, 9 (1954).Google Scholar
  2. 2.
    P. A. Flinn, Acta Met.,6, 631 (1958).Google Scholar
  3. 3.
    G. W. Ardley, Acta Met.3, 525 (1955).Google Scholar
  4. 4.
    J. B. Cohen and M. Fine, La Structure des Solutions Solides Metalliques, Orsay (1962).Google Scholar
  5. 5.
    V. P. Fadin, V. E. Panin, and E. F. Dudarev, Fiz. Met. i Metal.,14, 35 (1962).Google Scholar
  6. 6.
    V. E. Panin and A. D. Kuznetsova, Fiz. Met. i Metal.,17, 798 (1964).Google Scholar
  7. 7.
    N. V. Nikitina, E. F. Dudarev, and V. E. Panin, Fiz. Met. i Metal.,26, 361 (1968).Google Scholar
  8. 8.
    K. Sumino, Sci. Rept. Res. Inst. Tokyo Univ.,A10, 283 (1958).Google Scholar
  9. 9.
    P. S. Rudman, Acta Met.,10, 253 (1962).Google Scholar
  10. 10.
    L. E. Popov and N. V. Kozhemyakin, Dokl. Akad. Nauk SSSR, 182, 559 (1968).Google Scholar
  11. 11.
    H. E. Cook, Trans. AIME,242, 1599 (1968).Google Scholar
  12. 12.
    S. M. Copley and B. H. Kear, Trans. AIME,237 977 (1967).Google Scholar
  13. 13.
    I. V. Tereshko and L. E. Popov, Izv. VUZ. Fiz., No. 5 (1969).Google Scholar
  14. 14.
    E. V. Kozlov, Izv. VUZ. Fiz., No. 2 (1970).Google Scholar
  15. 15.
    A. A. Smirnov, Molecular-Kinetics Theory of Metals [in Russian], Nauka (1966).Google Scholar
  16. 16.
    J. M. Cowley, Phys. Rev.,77, 669 (1950).Google Scholar
  17. 17.
    J. M. Cowley, Phys. Rev.,120, 1648 (1960).Google Scholar
  18. 18.
    J. M. Cowley, Phys. Rev.,138, A1384 (1965).Google Scholar
  19. 19.
    L. D. Fosdick, Phys. Rev.,116, 565 (1959).Google Scholar
  20. 20.
    M. J. Marcinkowski, Electron Microscopy and Strength of Crystals, Interscience, New York (1963).Google Scholar
  21. 21.
    L. E. Popov, E. V. Kozlov, and N. M. Kormin, Atomic Order and Its Effect on the Properties of Alloys (Series: Physics of Metals) [in Russian], No. 20, Naukova Dumka, Kiev (1968), p. 20.Google Scholar
  22. 22.
    S. N. Sidorov and A. V. Doroshenko, Fiz. Met. i Metal.,20, 850 (1966).Google Scholar
  23. 23.
    S. K. Sidorov and A. V. Doroshenko, Phys. Stat. Sol.,16, 737 (1966).Google Scholar
  24. 24.
    M. J. Marcinkowski, N. Brown, and R. M. Fisher, Acta Met.,9, 129 (1961).Google Scholar
  25. 25.
    L. E. Popov, E. V. Kozlov, and N. S. Golosov, Phys. Stat. Sol.,13, 569 (1966).Google Scholar
  26. 26.
    N. S. Golosov, L. Ya. Pudan, and L. E. Popov, Izv. VUZ. Fiz., No. 1 (1969).Google Scholar
  27. 27.
    G. C. Kuczynski, M. Doyama, and M. E. Fine, J. Appl. Phys.,27, 651 (1956).Google Scholar
  28. 28.
    V. S. Kurdyumov and L. P. Chupyatova, Dokl. Akad. Nauk SSSR,172, No. 4 (1967).Google Scholar
  29. 29.
    M. J. Marcinkowski and L. Zwell, Acta Met.,11, 373 (1963).Google Scholar
  30. 30.
    W. Bell, W. R. Roser, and G. Thomas, Acta Met.,12, 1247 (1964).Google Scholar
  31. 31.
    B. H. Kear and H. G. F. Wilsdorf, Trans. AIME,224, 382 (1962).Google Scholar
  32. 32.
    B. H. Kear, Acta Met.,12, 555 (1964).Google Scholar
  33. 33.
    L. E. Popov, Dissertation [in Russian], Tomsk (1969).Google Scholar
  34. 34.
    L. E. Popov and E. V. Kozlov, Mechanical Properties of Ordered Solid Solutions [in Russian], Metallurgiya (1970).Google Scholar
  35. 35.
    J. H. Kirby and F. W. Noble, Phil. Mag.,16, No. 143 (1967).Google Scholar
  36. 36.
    J. H. Kirby and F. W. Noble, Phil. Mag.,19, No. 161, 877 (1969).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • É. V. Kozlov
    • 1
    • 2
  • L. E. Popov
    • 1
    • 2
  • A. E. Ginzburg
    • 1
    • 2
  1. 1.V. D. Kuznetsov Siberian Physicotechnical InstituteUSSR
  2. 2.Tomsk Civil Engineering InstituteUSSR

Personalised recommendations