Molecular and Cellular Biochemistry

, Volume 31, Issue 1, pp 25–36 | Cite as

The control of protein synthesis by hemin in rabbit reticulocytes

  • Martin Gross
Article

Summary

The control of protein synthesis by hemin in rabbit reticulocytes or lysates is mediated by the formation of a high molecular weight protein inhibitor of polypeptide chain initiation termed the hemin-controlled translational repressor (HCR). HCR becomes activated in the absence of hemin from a presynthesized precursor (prorepressor) in a manner that is still unclear but appears to involve a series of discrete conformational changes in a single protein. At a very early stage of activation, HCR (reversible) can be inactivated by hemin, at a somewhat later stage (intermediate HCR) it can still be inactivated in a GTP-dependent reaction by a soluble lysate protein termed the supernatant factor, and after more than several hours of warming, HCR (irreversible) can no longer be inactivated. Formation of HCR involves no detectable change in molecular size but may involve, directly or indirectly, disulfide bond formation or interchange, since activation occurs very rapidly in the presence of such sulfhydryl reagents as N-ethylmaleimide. Once activated, HCR (all three forms) acts by phosphorylating the 35,000 Mr (α) subunit of eIF-2, the initiation factor that mediates binding of Met-tRNAf to 40 s ribosomal subunits. The protein kinase action of HCR is relatively specific for eIF-2α, although HCR also autophosphorylates a 90–100,000 Mr component of itself. While most of the protein synthsized by rabbit reticulocytes is globin, the synthesis, at low levels, of other reticulocyte proteins is also reduced by HCR, consistent with its action on eIF-2, a factor that acts in initiation before mRNA is bound. At present, the mechanism by which phosphorylation of eIF-2α by HCR causes inhibition of polypeptide chain initiation is only partially understood. There is general agreement that the binding of Met-tRNAf to 40 s ribosomal subunits is reduced, perhaps due to impaired interaction of eIF-2α-P with other ribosomal protein components. There is also evidence that HCR causes the accumulation of 48 s intermediate initiation complexes, containing a 40 s ribosomal subunit, mRNA, and tRNAfmet that is largely deacylated. This suggests that the joining of 48 s complexes with 60 s subunits to form 80 s initiation complexes is also blocked and results in the deacylation of subunit-bound Met-tRNAf. Additional work will be required to delineate the precise molecular mechanisms by which HCR becomes activated in the absence of hemin and how the phosphorylation of eIF-2α interrupts the process of polypeptide chain initiation.

Keywords

Disulfide Bond Sulfhydryl Hemin Protein Kinase Action Ribosomal Subunit 

Abbreviations

HCR

hemin-controlled translational repressor

eIF

eukaryotic initiation factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kruh, J. and Borsook, H., 1956. J. Biol. Chem. 220, 905–915.PubMedGoogle Scholar
  2. 2.
    Bruns, G. P. and London, I. M., 1965. Biochem. Biophys. Res. Commun. 18, 236–242.PubMedGoogle Scholar
  3. 3.
    Adamson, S. D., Herbert, E., and Godchaux, W., 1968. Arch. Biochem. Biophys. 125, 671–683.PubMedGoogle Scholar
  4. 4.
    Zucker, W. V. and Schulman, H. M. 1968. Proc. Natl. Acad. Sci. U.S.A. 59, 582–589.PubMedGoogle Scholar
  5. 5.
    Maxwell, C. R. and Rabinovitz, M., 1969. Biochem. Biophys. Res. Commun. 35, 79–85.PubMedGoogle Scholar
  6. 6.
    Rabinovitz, M., Freedman, M. L., Fisher, J. M., and Maxwell, C. R., 1969. Cold Spring Harbor Symp. Quant. Biol. 34, 567–578PubMedGoogle Scholar
  7. 7.
    Howard, G. A., Adamson, S. D., and Herbert, E., 1970. Biochim. Biophys. Acta 213, 237–240.PubMedGoogle Scholar
  8. 8.
    Maxwell, C. R., Kamper, C. S., and Rabinovitz, M., 1971. J. Mol. Biol. 58, 317–327.PubMedGoogle Scholar
  9. 9.
    Adamson, S. D., Yau, P. M., Herbert, E., and Zucker, W. V., 1972. J. Mol. Biol. 63, 247–264.PubMedGoogle Scholar
  10. 10.
    Gross, M. and Rabinovitz, M., 1972. Proc. Natl. Acad. Sci. U.S.A. 69, 1565–1568.PubMedGoogle Scholar
  11. 11.
    Legon, S., Jackson, R. J., and Hunt, T., 1973. Nature New Biol. 241, 150–152.PubMedGoogle Scholar
  12. 12.
    Clemens, M. J., Henshaw, E. C., Rahamimoff, H., and London, I. M., 1974. Proc. Natl. Acad. Sci. U.S.A. 71, 2946–2950.PubMedGoogle Scholar
  13. 13.
    Farrell, P. J., Balkow, K., Hunt, T., Jackson R. J., and Trachsel, H., 1977 Cell 11, 187–200.PubMedGoogle Scholar
  14. 14.
    Kramer, G., Cimadevilla, J. M., and Hardesty, B., 1976. Proc. Natl. Acad. Sci. U.S.A. 73, 3078–3082.PubMedGoogle Scholar
  15. 15.
    Levin, D. H., Ranu, R. S., Ernst, V., and London, I. M., 1976. Proc. Natl. Acad. Sci. U.S.A. 73, 3112–3116.PubMedGoogle Scholar
  16. 16.
    Gross, M. and Mendelewski, J., 1977. Biochem. Biophys. Res. Commun. 74, 559–569.PubMedGoogle Scholar
  17. 17.
    Farrell, P. J., Hunt, T., and Jackson, R. J., 1978. Eur. J. Biochem. 89, 517–521.PubMedGoogle Scholar
  18. 18.
    Schreier, M. H. and Staehelin, T., 1973. Nature New Biol. 242, 35–38.PubMedGoogle Scholar
  19. 19.
    Levin, D. H., Kyner, D., and Acs, G., 1973. J. Biol. Chem. 248, 6416–6425.PubMedGoogle Scholar
  20. 20.
    Cashion, L. M. and Stanley, W. M., 1974. Proc. Natl. Acad. Sci. U.S.A. 71, 436–440.PubMedGoogle Scholar
  21. 21.
    Adams, S. L., Safer, B., Anderson, W. F., and Merrick, W. C., 1975. J. Biol. Chem. 250, 9083–9089.PubMedGoogle Scholar
  22. 22.
    Benne, R., Wong, C., Luedi, M., and Hershey, J. W. B., 1976. J. Biol. Chem. 251, 7675–7681.PubMedGoogle Scholar
  23. 23.
    Hunt, T., Vanderhoff, G., and London, I. M., 1972. J. Mol. Biol. 66, 471–481.PubMedGoogle Scholar
  24. 24.
    Gross, M. and Rabinovitz, M., (1973) Biochim. Biophys. Acta 299, 472–479.PubMedGoogle Scholar
  25. 25.
    Gross, M., 1974. Biochim. Biophys. Acta 366, 319–332.PubMedGoogle Scholar
  26. 26.
    Gross, M., 1974. Biochim. Biophys. Acta 340, 484–497.PubMedGoogle Scholar
  27. 27.
    Gross, M. and Mendelewski, J., 1978. Biochim. Biophys. Acta 520, 650–663.PubMedGoogle Scholar
  28. 28.
    Mizuno, S., Fisher, J. M., and Rabinovitz, M., 1972 Biochim. Biophys. Acta 272, 638–650.PubMedGoogle Scholar
  29. 29.
    Gross, M. and Rabinovitz, M. 1972. Biochim. Biophys. Acta 287, 340–352.PubMedGoogle Scholar
  30. 30.
    Hunt, T., 1979. in Miami Winter Symposium: From Gene to Protein (Russell, T. R., Brew, K., Schultz, J., and Haber, H., eds.) Vol. 16, Academic Press, New York, in Press.Google Scholar
  31. 31.
    Balkow, K., Hunt, T., and Jackson, R. J., 1975. Biochem. Biophys. Res. Commun. 67, 366–375.PubMedGoogle Scholar
  32. 32.
    Ernst, V., Levin, D. H., Ranu, R. S., and London, I. M., 1976. Proc. Natl. Acad. Sci. U.S.A. 73, 1112–1116.PubMedGoogle Scholar
  33. 33.
    Gross, M., 1978. Biochim. Biophys. Acta 520, 642–649.PubMedGoogle Scholar
  34. 34.
    Ernst, V., Levin, D. H., and London, I. M., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 4110–4114.PubMedGoogle Scholar
  35. 35.
    Henderson, A. B. and Hardesty, B., 1978. Biochem. Biophys. Res. Commun. 83, 715–723.PubMedGoogle Scholar
  36. 36.
    Datta, A., DeHaro, C., Sierra, J. M., and Ochoa, S., 1977. Proc. Natl. Acad. Sci. U.S.A. 74, 1463–1467.PubMedGoogle Scholar
  37. 37.
    Datta, A., DeHaro, C., Sierra, J. M., and Ochoa, S., 1977. Proc. Natl. Acad. Sci. U.S.A. 74, 3326–3329.PubMedGoogle Scholar
  38. 38.
    Datta, A. DeHaro, C., and Ochao, S., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 1148–1152.PubMedGoogle Scholar
  39. 39.
    Trachsel, H., Ranu, R. S., and London, I. M., 1978. Proc. Nall. Acad. Sci. U.S.A. 75, 3654–3658.Google Scholar
  40. 40.
    Traugh, J. A. 1979. J. of Supramolec. Structure Supplement 3, 6.Google Scholar
  41. 41.
    Grankowski, N., Kramer, G., and Hardesty, B., 1979. J. Biol. Chem. 254, 3145–3147.PubMedGoogle Scholar
  42. 42.
    Levin, D., Ernst, V., and London, I. M., 1979. J. Biol. Chem. 254, 7935–7941.PubMedGoogle Scholar
  43. 43.
    Waxman, H. S. and Rabinovitz, M., 1965. Biochem. Biophys. Res. Commun. 19, 538–545.PubMedGoogle Scholar
  44. 44.
    Grayzel, A. I., Hörchner, P., and London, I. M., 1966. Proc. Natl. Acad. Sci. U.S.A. 55, 650–655.PubMedGoogle Scholar
  45. 45.
    Waxman, H. S. and Rabinovitz, M., 1966. Biochim. Biophys. Acta 129, 369–379.Google Scholar
  46. 46.
    Gross, M. and Rabinovitz, M., 1973. Biochem. Biophys. Res. Commun. 50, 832–838.PubMedGoogle Scholar
  47. 47.
    Ranu, R. S. and London, I. M., 1976. Proc. Natl. Acad. Sci. U.S.A. 73, 4349–4353.PubMedGoogle Scholar
  48. 48.
    Legon, S., Brayley, A., Hunt, T., and Jackson, R. J., 1974. Biochem. Biophys. Res. Commun. 56, 745–752.PubMedGoogle Scholar
  49. 49.
    Kaempfer, R. and Kaufman, J., 1972. Proc. Natl. Acad. Sci. U.S.A. 69, 3317–3321.PubMedGoogle Scholar
  50. 50.
    Kaempfer, R., 1974. Biochem. Biophys. Res. Commun. 61, 591–597.Google Scholar
  51. 51.
    Clemens, M. J., Safer, B., Merrick, W. C., Anderson, W. F., and London, I. M., 1975. Proc. Natl. Acad. Sci. U.S.A. 72, 1286–1290.PubMedGoogle Scholar
  52. 52.
    Gross, M., 1977. Arch. Biochem. Biophys. 180, 121–129.PubMedGoogle Scholar
  53. 53.
    Safer, B., Lloyd, M., Jagus, R., and Kemper, W., 1978. Fed. Proc. 37, 1622.Google Scholar
  54. 54.
    Floyd, G. A. and Traugh, J. A., 1978. Fed. Proc. 37, 1792.Google Scholar
  55. 55.
    Floyd, G. A., Merrick, W. C., and Traugh, J. A., 1979. Eur. J. Biochem. 96, 277–286.PubMedGoogle Scholar
  56. 56.
    Ernst, V., Levin, D. H., and London, I. M., 1979. Proc. Natl. Acad. Sci. U.S.A. 76, 2118–2122.PubMedGoogle Scholar
  57. 57.
    Pinphanichakarn, P., Kramer, G., and Hardesty, B., 1976. Biochem. Biophys. Res. Commun. 73, 625–631.PubMedGoogle Scholar
  58. 58.
    Ranu, R. S., London, I. M., Das, A., Dasgupta, A., Majumdar, A., Ralston, R., Roy, R., and Gupta, N. K., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 745–749.PubMedGoogle Scholar
  59. 59.
    Deharo, C., and Ochoa, S., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 2713–2716.PubMedGoogle Scholar
  60. 60.
    Gross, M., 1979. J. Biol. Chem. 254, 2378–2383.PubMedGoogle Scholar
  61. 61.
    Balkow, K., Mizuno, S., and Rabinovitz, M., 1973. Biochem. Biophys. Res. Commun. 54, 315–323.PubMedGoogle Scholar
  62. 62.
    Balkow, K., Mizuno, S., Fisher, J. M., and Rabinovitz, M., 1973. Biochim. Biophys. Acta 324, 397–409.PubMedGoogle Scholar
  63. 63.
    Darnbrough, C., Legon, S., Hunt, T., and Jackson, R. J., 1973. J. Mol. Biol. 76, 379–403.PubMedGoogle Scholar
  64. 64.
    64.Gross, M., 1979. J. Biol. Chem. 254, 2370–2377.PubMedGoogle Scholar
  65. 65.
    Das, A. and Gupta, N. K., 1977. Biochem. Biophys. Res. Commun. 77, 1307–1316.Google Scholar
  66. 66.
    Ranu, R. S. and London, I. M., 1979. Proc. Natl. Acad. Sci. U.S.A. 76, 1079–1083.PubMedGoogle Scholar
  67. 67.
    Das, A., Ralston, R. O., Grace, M., Roy, R., Ghosh-Dastidar, P., Das, H. K., Yaghmal, B., Palmieri, S., and Gupta, N. K., 1979. Proc. Natl. Acad. Sci. U.S.A. 76, 5076–5079.PubMedGoogle Scholar
  68. 68.
    DeHaro, C., Datta, A., and Ochoa, S., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 243–247.PubMedGoogle Scholar
  69. 69.
    DeHaro, C. and Ochoa, S., 1979. Proc. Natl. Acad. Sci. U.S.A. 76, 1741–1745.PubMedGoogle Scholar
  70. 70.
    Benne, R., Amesz, H., Hershey, J. W. B., and Voorma, H. O., 1979. J. Biol. Chem. 254, 3201–3205.PubMedGoogle Scholar
  71. 71.
    Safer, B., Kemper, W., and Jagus, R., 1979. J. Biol. Chem. 254, 8091–8094.PubMedGoogle Scholar
  72. 72.
    Ranu, R. S., Levin, D. H., Delaunay, J., Ernst, V., and London, I. M., 1976. Proc. Natl. Acad. Sci. U.S.A. 73, 2720–2724.PubMedGoogle Scholar
  73. 73.
    Cherbas, L., and London, I. M., 1976. Proc. Natl. Acad. Sci. U.S.A. 73, 3506–3510.PubMedGoogle Scholar
  74. 74.
    Morrisey, J. and Hardesty, B., 1972. Arch. Biochem. Biophys. 152, 385–397.PubMedGoogle Scholar
  75. 75.
    Gupta, N. K. and Aerni, R. J., 1973. Biochem. Biophys. Res. Commun. 51, 907–916.PubMedGoogle Scholar
  76. 76.
    Safer, B., Kemper, W., and Jagus, R., 1978. J. Biol. Chem. 253, 3384–3386.PubMedGoogle Scholar
  77. 77.
    Gross, M., 1976. Biochim. Biophys. Acta 447, 445–459.PubMedGoogle Scholar
  78. 78.
    Ranu, R. S. and London, I. M. 1977. Fed. Proc. 36, 868.Google Scholar
  79. 79.
    Amesz, H., Goumans, H., Hambrich-Morree, T., Voorma, H. O., and Benne, R., 1979. Eur. J. Biochem. 98, 513–520.PubMedGoogle Scholar
  80. 80.
    Ralston, R. O., Das, A., Grace, M., Das, H., and Gupta, N. K., 1979. Proc. Natl. Acad. Sci. U.S.A. 76, 5490–5494.PubMedGoogle Scholar
  81. 81.
    Safer, B. and Jagus, R., 1979. Proc. Natl. Acad. Sci. U.S.A. 76, 1094–1098.PubMedGoogle Scholar
  82. 82.
    Levin, D. and London, I. M., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 1121–1125.PubMedGoogle Scholar
  83. 83.
    Zilberstein, A., Kimchi, A., Schmidt, A., and Revel, M., 1978. Proc. Natl. Acad. Sci. U.S.A. 75, 4734–4738.PubMedGoogle Scholar
  84. 84.
    Sen, G. C., Taira, H., and Lengyel, P., 1978. J. Biol. Chem. 253, 5915–5921.PubMedGoogle Scholar
  85. 85.
    Anderson, W. F., Bosch, L., Cohn, W. E., Lodish, H., Merrick, W. C., Weissbach, H., Wittman, H. G., and Wool, I. G., 1977. FEBS Lett. 76, 1–10.PubMedGoogle Scholar

Copyright information

© Dr. W. Junk bv. Publishers 1980

Authors and Affiliations

  • Martin Gross
    • 1
  1. 1.Department of PathologyThe University of Chicago, Pritzker School of MedicineChicago

Personalised recommendations