Skip to main content
Log in

Cerebrosides fromfomitopsis pinicola (Sw. Ex Fr.) Karst.

Cerebroside ausFomitopsis pinicola (Sw. Ex Fr.) Karst.

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

A cerebroside fraction was obtained from the fruit bodies offomitopsis pinicola using column chromatography and then separated into six compounds by reversed-phase HPLC. The sugar component of all cerebrosides wasD-glucose. The major fatty acids were 2-hydroxyfatty acids (C14–C18), the long chain base was identified as 9-methyl-C18-4,8-sphingadienine which is widely distributed in fungi and reported to be essential for the fruit-inducing activity of fungi. Based on degradation studies, fast atom bombardment mass spectrometry, and different1H and13C NMR investigations, the structure of the main cerebroside (1) was determined to be (4E,8E,2S,3R,2′R)-N-2′-hydroxypalmityl-1-O-β-D-glucopyranosyl-9-methyl-4,8-sphingadienine.

Zusammenfassung

Aus den Fruchtkörpern vonfomitopsis pinicola wurde ein Cerebrosidgemisch erhalten und durch Säulenchromatographie und HPLC in sechs Verbindungen aufgetrennt. Der Zuckerbaustein aller Cerebroside warD-Glucose. Die Fettsäurekomponenten waren 2-Hydroxyfettsäuren mit einer Kettenlänge zwische C14 und C18. Der Basenteil konnte als 9-Methyl-C18-4,8-sphingadienin identifiziert werden. Diese Verbindung ist in Pilzen weit verbreitet und für die Fruchtbildung verantwortlich. Aus Abbaustudien, FAB-MS und verschiedenen1H- und13C-NMR-Messungen wurde die Struktur des Hauptcerebrosids (1) als (4E,8E,2S,3R,2′R)-N-2′-hydroxypalmityl-1-O-β-D-glucopyranosyl-9-methyl-4,8-sphingadienin ermittelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizuno T, Hayashi K (1981) Shizuoka Daigaku Nogakubu Kenkyu Hokoko31: 65

    Google Scholar 

  2. Mizuno T, Usui T (1980) Shizuoka Daigaku Nogakubu Kenkyu Hokoko30: 41

    Google Scholar 

  3. Asawa K, Yoshimoto T (1980) Mokuzai Gakkaishi26: (12) 819

    Google Scholar 

  4. Kawai G, Ikeda Y (1983) Biochim Biophys Acta754: 243

    Google Scholar 

  5. Kawai G (1989) Biochim Biophys Acta1001: 185

    Google Scholar 

  6. Kawai G, Ikeda Y (1985) Agric Biol Chem49: (7) 2137

    Google Scholar 

  7. Kawai G, Ikeda Y (1982) Biochim Biophys Acta719: 612

    Google Scholar 

  8. Mori K, Funaki Y (1985) Tetrahedron Lett41: (12) 2369

    Google Scholar 

  9. Dill D, Eckau H, Budzikiewicz H (1985) Z Naturforsch40b: 1738

    Google Scholar 

  10. De Haan JW, van de Ven LJM (1973) Org Magn Resonance5: 147

    Google Scholar 

  11. Sitrin RD, Chan G (1987) J Antibiot41: (4) 469

    Google Scholar 

  12. Karlsson K-A, Leffler H, Samuelson BE (1979) Biochim Biophys Acta574: 79

    Google Scholar 

  13. Reznicek G, Susman O, Böhm K (1993) Sci Pharm61: 35

    Google Scholar 

  14. Chapman Jr GW, Horvat RJ (1989) J Agric Food Chem37: 947

    Google Scholar 

  15. Rothenburger J, Haslinger E (1994) Liebigs Ann Chem 1113

  16. Kuwata T (1973) J Am Chem Soc95: 5112

    Google Scholar 

  17. Yasukara F, Yamaguchi S (1980) Tetrahedron Lett21: 2827

    Google Scholar 

  18. Kawashima K, Shibuya H (1990) Chem Pharm Bull38: (11) 2933

    Google Scholar 

  19. Weete R (1980) Fungal Lipid Biochem. Distrib. and Metabolism. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Striegler, S., Haslinger, E. Cerebrosides fromfomitopsis pinicola (Sw. Ex Fr.) Karst. . Monatsh Chem 127, 755–761 (1996). https://doi.org/10.1007/BF00817267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00817267

Keywords

Navigation