Advertisement

Catalysis Letters

, Volume 33, Issue 1–2, pp 67–74 | Cite as

Remarks on the assignments of temperature programmed desorption peaks for the surface species formed on Cu/ZnO and ZnO in the methanol synthesis from CO

  • Shin-ichiro Fujita
  • Hiroto Ito
  • Nobutsune Takezawa
Article

Abstract

Temperature programmed desorption (TPD), IR spectroscopy and chemical trapping of the surface species with H2O revealed that the TPD peak of CO frequently assigned to zinc formate species, which were formed in the course of the methanol synthesis from CO-H2, arose from zinc methoxide species.

Keywords

Cu/ZnO catalyst ZnO catalyst methanol synthesis surface formate species methoxide species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bowker, H. Houghton and K.C. Waugh, J. Chem. Soc. Faraday Trans. I 77 (1981) 3023.Google Scholar
  2. [2]
    S. Akhter, W.H. Cheng, K. Lui and H.H. Kung, J. Catal. 85 (1984) 437.Google Scholar
  3. [3]
    L. Chan and G.L. Griffin, Surf. Sci. 155 (1985) 400.Google Scholar
  4. [4]
    D.L. Roberts and G.L. Griffin, J. Catal. 101 (1986) 201.Google Scholar
  5. [5]
    L. Chan and G.L. Griffin, Surf. Sci. 173 (1986) 160.Google Scholar
  6. [6]
    J.M. Vohs and M.A. Barteau, Surf. Sci. 176 (1986) 91.Google Scholar
  7. [7]
    M. Bowker, R.A. Hadden, H. Houghton, J.N. Hyland and K.C. Waugh, J. Catal. 109 (1988) 263.Google Scholar
  8. [8]
    A. Kiennemann, H. Idriss, J.P. Hindermann, J.C. Lavalley, A. Vallet, P. Chaumette and P. Courty, Appl. Catal. 59 (1990) 165.Google Scholar
  9. [9]
    C. Chauvin, J. Saussey, J.C. Lavalley, H. Idriss, J.P. Hindermann, A. Kiennemann, P. Chaumette and P. Courty J. Catal. 121 (1990) 56.Google Scholar
  10. [10]
    S.G. Neophytides, A.J. Marchi and G.F. Froment, Appl. Catal. 86 (1992) 45.Google Scholar
  11. [11]
    G.J. Millar, C.H. Rochester, S. Bailey and K.C. Waugh, J. Chem. Soc. Faraday Trans. 88 (1992) 2085.Google Scholar
  12. [12]
    S.S. Fu and G.A. Somorjai, J. Phys. Chem. 96 (1992) 4542.Google Scholar
  13. [13]
    D. Chadwick and K. Zheng, Catal. Lett. 20 (1993) 231.Google Scholar
  14. [14]
    W.R.A.M. Robinson and J.C. Mol, Appl. Catal. A 98 (1993) 81.Google Scholar
  15. [15]
    K.M. Vanden Bussche and G.F. Froment, Appl. Catal. A 112 (1994) 37.Google Scholar
  16. [16]
    J. Saussey and J.C. Lavalley, J. Mol. Catal. 50 (1989) 343.Google Scholar
  17. [17]
    S. Fujita, M. Usui, E. Ohara and N. Takezawa, Catal. Lett. 13 (1992) 349.Google Scholar
  18. [18]
    S. Fujita, H. Ito and N. Takezawa, Bull. Chem. Soc. Japan 66 (1993) 3094.Google Scholar
  19. [19]
    R.G. Herman, K. Klier, G.W. Simmons, B.P. Finn, J.B. Bulko and T.P. Kobylinski, J. Catal. 56 (1979) 407.Google Scholar
  20. [20]
    A. Ueno, T. Onishi and K. Tamara, Trans. Faraday Soc. 66 (1970) 756.Google Scholar
  21. [21]
    J.F. Edwards and G.L. Schrader, J. Phys. Chem. 89 (1985) 782.Google Scholar
  22. [22]
    G. Hussain and N. Sheppard, Spectrochim. Acta A43 (1987) 1631.Google Scholar
  23. [23]
    A. Ueno, T. Onishi and K. Tamaru, Trans. Faraday Soc. 67 (1991) 3585.Google Scholar
  24. [24]
    N. Takezawa and H. Kobayashi, J. Catal. 28 (1973) 335.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Shin-ichiro Fujita
    • 1
  • Hiroto Ito
    • 1
  • Nobutsune Takezawa
    • 1
  1. 1.Division of Materials Science and Engineering, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations