Advertisement

Catalysis Letters

, Volume 31, Issue 1, pp 75–89 | Cite as

Preparation effects on the activity of Cu-ZSM-5 catalysts for NO decomposition

  • Yanping Zhang
  • Katie M. Leo
  • Adel F. Sarofim
  • Zhicheng Hu
  • Maria Flytzani-Stephanopoulos
Article

Abstract

Effects of Cu-ZSM-5 catalyst preparation on the activity of “over-exchanged” copper for NO decomposition are reported. The Cu-ZSM-5 catalysts were prepared by incorporating Cu2+ cations into ZSM-5 zeolites from an aqueous cupric acetate solution adjusted to different pH values by adding either acetic anhydride or aqueous ammonia in the solution. The Cu2+ exchange levels increased with increasing pH level. STEM/EDX analysis identified CuO particles (5–6 nm) on the zeolite surface for the materials exchanged at pH>6. Conversion and kinetics measurements of NO decomposition to N2 over these catalysts showed that the “over-exchanged” copper was not active. Short-time wash with aqueous ammonia removed this copper. The catalyst activity correlated very well with the amount of copper remaining in the ZSM-5 channels.

Keywords

NO decomposition surface Cu and ion-exchanged Cu pH effects STEM analysis of Cu-ZSM-5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya and S. Kagawa, J. Chem. Soc. Chem. Commun. 15 (1986) 1272.Google Scholar
  2. [2]
    M. Iwamoto, in:Future Opportunities in Catalytic and Separation Technology, Studies in Surface Science and Catalysis, Vol. 54, eds. M. Misono, Y. Moro-oka and S. Kimura (Elsevier, Amsterdam, 1990) pp. 121–143.Google Scholar
  3. [3]
    Y. Li and W. K. Hall, J. Catal. 129 (1991) 202.Google Scholar
  4. [4]
    R.A. Schoonheydt, L.J. Vandamme, P.A. Jacobs and J.B. Uytterhoeven, J. Catal. 43 (1976) 292.Google Scholar
  5. [5]
    J. Sarkany, J.L. d'Itri and W.M.H. Sachtler, Catal. Lett. 16 (1992)241.Google Scholar
  6. [6]
    J. Valyon and W.K. Hall, Catal. Lett. 19 (1993) 109.Google Scholar
  7. [7]
    M. Iwamoto, H. Yahiro, Y. Mine and S. Kagawa, Chem. Lett. (1989) 213.Google Scholar
  8. [8]
    M. Iwamoto, H. Yahiro, Y. Torikai. T. Yoshioka and N. Mizuno, Chem. Lett. (1990) 1967.Google Scholar
  9. [9]
    M.C. Campa, V. Indovina, G. Minelli, G. Moretti, I. Pettiti, P. Porta and A. Riccio, Catal. Lett. 23 (1994) 141.Google Scholar
  10. [10]
    J.H. van Hooff and C. Roelofsen, in:Introduction to Zeolite Science and Practice, eds. H. Van Bekkum, E.M. Flanigen and J.C. Jansen (Elsevier, Amsterdam, 1991) pp. 241–283.Google Scholar
  11. [11]
    R.A. Schoonheydt, in:Introduction to Zeolite Science and Practice, eds. H. Van Bekkum, E.M. Flanigen and J.C. Jansen, (Elsevier, Amsterdam, 1991) pp. 201–239.Google Scholar
  12. [12]
    Dalian Institute of Technology,Chemistry (Education Press, Beijin, 1978) p. 361.Google Scholar
  13. [13]
    H. Ohtaki, Inorg. Chemistry 7 (1968) 1205.Google Scholar
  14. [14]
    E.S. Shpiro, W. Grünert, R.W. Joyner and G.N. Baeva, Catal. Lett. 24 (1994) 159.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Yanping Zhang
    • 1
  • Katie M. Leo
    • 1
  • Adel F. Sarofim
    • 1
  • Zhicheng Hu
    • 1
    • 2
  • Maria Flytzani-Stephanopoulos
    • 1
    • 3
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Engelhard Co.IselinUSA
  3. 3.Department of Chemical EngineeringTufts UniversityMedfordUSA

Personalised recommendations