Skip to main content
Log in

Das Pyren und der Einfluß von Substitution oder Komplexie-rung auf seine Geometrie und Packung im kristallinen Zustand

Pyrene and the influence of substitution or complexation on its geometry and packing in the crystalline state

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

The crystal structures of pyrene and substituted and complexed derivatives of pyrene have been investigated by X-ray and neutron diffraction. The geometry of the pyrene skeleton has been determined experimentally with high accuracy and calculated by quantum chemical methods. In the cases reported in the literature and cited here the pyrene skeleton has the molecular symmetry mmm or mm2 with values for the bond lengths of the six symmetrically independent bondsa, b, c, d, e, f differing significantly in the limits of error. Mean values of a number of experimental and theoretical bond lengths are given and can be considered as standard values for the mm2 symmetric pyrene skeleton. In the case of substitution of the pyrene in 3-position with a polar heterocyclic molecule of the azomethine-imine type the mm2 symmetry vanishes, a C–H ... N intramolecular hydrogen bond arises and the directly neighbouring pyrene units are not packed parallel with their planes to each other, but they are considerably tilted. Relatively narrow intermolekular C-C contacts, 3.314 and 3.368 Å, have been observed. The conclusion is drawn that the asymmetry of the pyrene molecule and a tilt of directly neighbouring pyrene units in the crystal packing can be induced by substitution e. g. with suitable polar heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Robertson J. M., White J. G., J. Chem. Soc.61, 358 (1947).

    Google Scholar 

  2. Kitaigorodski A. I., Molekülkristalle, S. 43. Berlin: Akademie Verlag (DDR). 1970.

    Google Scholar 

  3. Camerman A., Trotter J., Acta Cryst.18, 636 (1965).

    Google Scholar 

  4. Allmann R., Z. Krist.132, 129 (1970).

    Google Scholar 

  5. Kai Y., Hama F., Yasuoka N., Kasai N., Acta Cryst.B 34, 1263 (1978).

    Google Scholar 

  6. Hazell A. C., Larsen F. K., Lehmann M. S., Acta Cryst.B 28, 2977 (1972).

    Google Scholar 

  7. Ikamoto I., Kuroda H., Acta Cryst.B 24, 383 (1968).

    Google Scholar 

  8. Krebs-Larsen F., Little R. G., Coppens P., Acta Cryst.B 31, 430 (1975).

    Google Scholar 

  9. Hazell A. C., Lomborg J. G., Acta Cryst.B 28, 1059 (1972).

    Google Scholar 

  10. Herbstein F. H., Snyman J. A., Phil. Trans. Roy. Soc.A 264, 235 (1969).

    Google Scholar 

  11. Bernstein J., Regev H., Herbstein F. H., Main P., Rizvi S. H., Sasvari K., Turcsanyi B., Proc. Roy. Soc.A 347, 419 (1975).

    Google Scholar 

  12. Irngartinger H.,Kirrstetter R. G. H.,Krieger C.,Rodenwald H.,Staab H. A., Tetrahedron Lett.1977, 1425.

  13. Doherty R. M., Steward J. M., Acta Cryst.B 38, 859 (1982).

    Google Scholar 

  14. Barnes J. C.,Chudek J. A.,Foster R.,Jarrett F.,Mackie F.,Paton J.,Twiselton D. R., Tetrahedron1981, 1595.

  15. Moffit W. E., Coulson C. A., Proc. Roy. Soc. (London)60, 309 (1948).

    Google Scholar 

  16. Warren K. D., Yandle J. R., Theoret. Chim. Acta12, 267 (1968).

    Google Scholar 

  17. Pauling L., Acta Cryst.B 36, 1898 (1980).

    Google Scholar 

  18. Kulpe S., Seidel I., Geissler G., Cryst. Res. & Technol.18, 339 (1983).

    Google Scholar 

  19. Dorn H., Otto A., Chem. Ber.101, 3287 (1968).

    Google Scholar 

  20. Kulpe S., Z. Chem.20, 377 (1980).

    Google Scholar 

  21. Kulpe S., Z. Chem.5, 184 (1985).

    Google Scholar 

  22. Dähne S., Kulpe S., Structural Principles of Unsaturated Organic Compounds, Abhandlg. d. Akad. Wiss. DDR, N8. Berlin: Akademie Verlag (DDR). 1977.

    Google Scholar 

  23. Mehlhorn A., Fabian J., Kulpe S., J. prakt. Chem.326, 303 (1984).

    Google Scholar 

  24. Radeglia R., Dorn H., Z. Chem.22, 313 (1982).

    Google Scholar 

  25. Kulpe S., Seidel I., Z. phys. Chem. (Leipzig)264, 25 (1983).

    Google Scholar 

  26. Motherwell S., ENY. A Program for the Calculation of Potential Energies in Molecular Structures, Univ. Chemical Laboratory Cambridge, England (1973).

    Google Scholar 

  27. Kimura M., Kashino S., Morosawa S., Haisa M., Acta Cryst.C 40, 1612 (1984);Kimura M., Nukada K., Satake K., Morosawa S., Tamagake K., J. Chem. Soc. Perkin Trans. 1, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Juli 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulpe, S., Seidel, I. Das Pyren und der Einfluß von Substitution oder Komplexie-rung auf seine Geometrie und Packung im kristallinen Zustand. Monatsh Chem 117, 295–304 (1986). https://doi.org/10.1007/BF00816523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00816523

Keywords

Navigation