Cellulose

, Volume 2, Issue 2, pp 95–110 | Cite as

Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose

  • Roger H. Newman
  • Jacqueline A. Hemmingson
Research Papers

Abstract

Differences between values of proton rotating-frame spin relaxation time constants can be exploited to separate a solid-state13C NMR spectrum of cellulose into subspectra of crystalline and noncrystalline regions. Variations in chemical shifts and13C spin-lattice relaxation time constants can then be used to study variations in molecular order and disorder within each of the two broader categories. Mechanical damage during Wiley milling increases the content of noncrystalline cellulose and changes the nature of molecular disorder within that category. Resolution enhancement of the subspectrum assigned to crystalline cellulose reveals pairs of signals at 83.9 and 84.9 ppm (cellulose I) or 86.8 and 88.3 ppm (cellulose II) assigned to C-4 on well-ordered crystal surfaces. A broader peak in the subspectrum of crystalline cellulose I is assigned to poorly-ordered surfaces. Relative proportions in Avicel microcrystalline cellulose were estimated as: 54% in crystal interiors, 22% on well-ordered surfaces, 8% on poorly-ordered surfaces, 16% in domains of disorder extending more than a few nanometres.

Keywords

nuclear magnetic resonance molecular disorder crystal surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belton, P. S., Tanner, S. F., Cartier, N. and Chanzy, H. (1989) High-resolution solid-state13C nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose.Macromolecules 22, 1615–1617.Google Scholar
  2. Cael, J. J., Kwoh, D. L. W., Bhattacharjee, S. S. and Patt, S. L., (1985) Cellulose crystallites: a perspective from solid-state13C NMR.Macromolecules 18, 819–821.Google Scholar
  3. Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P. and Excoffier, G. (1991) The 109-01 transformation of highly crystalline cellulose by annealing in various mediums.Macromolecules 24, 6816–6822.Google Scholar
  4. Dolmetsch, H. and Dolmetsch, H. (1968) Über die Beziehungen zwischen Kristalliten, Elementarfibrillen und zugänglichen Bereichen in Cellulosefasern insbesondere in Holzfaserzellwänden.Das Papier 22, 1–11.Google Scholar
  5. Earl, W. L. and VanderHart, D. L. (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure.Macromolecules 14, 570–574.Google Scholar
  6. Ferrige, A. G., and Lindon, J. C. (1978) Resolution enhancement in FT NMR through the use of a double exponential function.J. Magn. Reson. 31, 337–340.Google Scholar
  7. Frey-Wyssling, A. (1954) The fine structure of cellulose microfibrils.Science 119, 80–82.Google Scholar
  8. Hermans, P. H. and Weidinger, A. (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis.J. Appl. Phys. 19, 491–506.Google Scholar
  9. Hirai, A., Horii, F. and Kitamaru, R. (1990) Carbon-13 spin-lattice relaxation behaviour of the crystalline and noncrystalline components of native and regenerated celluloses.Cellulose Chem. Technol. 24, 703–711.Google Scholar
  10. Horii, F., Hirai, A. and Kitamaru, R. (1982) Solid-state high-resolution13C-NMR studies of regenerated cellulose samples with different crystallinities.Polym. Bull. 8, 163–170.Google Scholar
  11. Horii, F., Hirai, A. and Kitamaru, R. (1983) Solid-state13C-NMR study of conformations of oligosaccharides and cellulose. Conformation of CH2OH group about the exo-cyclic C-C bond.Polym. Bull. 10, 357–361.Google Scholar
  12. Horii, F., Hirai, A. and Kitamaru, R. (1984) Cross-polarization/magic angle spinning13C-NMR study: molecular chain conformations of native and regenerated cellulose. InPolymers for Fibers and Elastomers, ACS Symposium Series 260, (J. C. Arthur, Jr., ed.), Washington, DC: American Chemical Society, pp 27–42.Google Scholar
  13. Horii, F., Hirai, A., Kitamaru, R. and Sakurada, I. (1985) Cross-polarization/magic-angle spinning13C NMR studies of cotton and cupra rayon with different water contents.Cellulose Chem. Technol. 19, 513–523.Google Scholar
  14. Horii, F., Hirai, A. and Kitamaru, R. (1987) CP/MAS13C NMR spectra of the crystalline components of native celluloses.Macromolecules 20, 2117–2120.Google Scholar
  15. Jayme, G. and Knolle, H. (1964) Beitrag zur empirischen röntgenographischen Bestimmung des Kritallinitätsgrades cellulosehaltiger Stoffe.Das Papier 18, 249–255.Google Scholar
  16. Maciel, G. E., Kolodziejski, W. L., Bertran, M. S. and Dale, B. E. (1982)13C NMR and order in cellulose.Macromolecules 15, 686–687.Google Scholar
  17. Majdanac, L. D., Poleti, D. and Teodorovic, M. J. (1991) Determination of the crystallinity of cellulose samples by X-ray diffraction.Acta Polymerica 42, 351–357.Google Scholar
  18. Newman, R. H. (1987) Effect of finite preparation-pulse power on carbon-13 cross-polarization NMR spectra of heterogeneous samples.J. Magn. Reson. 72, 337–340.Google Scholar
  19. Newman, R. H. (1992)13C NMR spectroscopy of multiphase biomaterials. InViscoelasticity of Biomaterials, ACS Symposium Series 489, (W. G. Glasser and H. Hatakeyama, eds.), Washington, DC: American Chemical Society, pp 311–319.Google Scholar
  20. Newman, R. H., and Hemmingson, J. A. (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy.Holzforschung 44, 351–355.Google Scholar
  21. Newman, R. H., Hemmingson, J. A., and Suckling, I. D. (1993) Carbon-13 nuclear magnetic resonance studies of kraft pulping.Holzforschung 47, 234–238.Google Scholar
  22. Smith, J. K., Kitchen, W. J. and Mutton, D. B. (1963) Structural study of cellulosic fibers.J. Polym. Sci., Part C, Polym. Symp. 2, 499–513.Google Scholar
  23. Sterk, H., Sattler, W., Janosi, A., Paul, D. and Esterbauer, H. (1987) Einsatz der Festkörper13C-NMR-Spektroskopie für die Bestimmung der Kristallinität in Cellulosen.Das Papier 41, 664–668.Google Scholar
  24. Sukhov, D. A., Zhilkin, A. N., Valov, P. M. and Terentiev, O. A. (1991) Cellulose structure in relation to paper properties.Tappi J. 74 (3), 201–204.Google Scholar
  25. Teeäär, R., Serimaa, R. and Paakkari, T. (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods.Polym. Bull. 17, 231–237.Google Scholar
  26. Torchia, D. A. (1978) The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artefacts.J. Magn. Reson. 30, 613–616.Google Scholar
  27. VanderHart, D. L. (1987) Natural-abundance13C-13C spin exchange in rigid crystalline organic solids.J. Magn. Reson. 72, 13–47.Google Scholar
  28. VanderHart, D. L., and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solid-state13C NMR.Macromolecules 17, 1465–1472.Google Scholar
  29. Zhbankov, R. G., Ioelovich, M. Ya., Treimanis, A., Lippmaa, E. T., Teejaer, R., Kaputskii, F. N., Grinshpan, D. D. and Lushchik, L. G. (1986) Determination of the degree of crystallinity of cellulose by high-resolution solid-state carbon-13 NMR.Khim. Drev. (4), 3–6.Google Scholar
  30. Zumbulyadis, N. (1983) Selective carbon excitation and the detection of spatial heterogeneity in cross-polarization magic-angle-spinning NMR.J. Magn. Reson. 53, 486–494.Google Scholar

Copyright information

© Blackie Academic & Professional 1995

Authors and Affiliations

  • Roger H. Newman
    • 1
  • Jacqueline A. Hemmingson
    • 1
  1. 1.NMR Spectroscopy, Industrial Research LimitedLower HuttNew Zealand

Personalised recommendations