The chemisorption of methanol on Cu films on ZnO(000¯1)-O

Abstract

The interactions of methanol with well-defined Cu films on the oxygen-terminated ZnO(000¯1)-O surface have been studied, mainly using temperature programmed desorption (TPD). The Cu films, which were from submonolayer to multilayer in coverage, had been structurally characterized in previous studies using XPS, LEIS, ARXPS, LEED and work function measurements, and by CO, H2O and formic acid adsorption. On clean Cu films methanol is adsorbed reversibly, desorbing at 200–260 K from atom-thick Cu islands, and at ∼ 155 K from multilayer islands preannealed to ∼ 550 K. In this respect, the atom-thin islands resemble Cu(110) sites and multilayer islands resemble Cu(111), consistent with behavior of other adsorbates. On oxygen-predosed multilayer films (preannealed to ∼ 600 K), methanol reacts to form methoxy species which decompose at 395 K to yield formaldehyde and hydrogen in TPD, also like Cu(111). Multilayer films preannealed to >750 K show a decrease in the peak area for methoxy decomposition which correlates with the loss of Cu area due to severe clustering. Oxygen-predosed Cu islands which are but one Cu atom thick show no clear evidence for a methoxy state in TPD. This suggests that oxygen atoms on such atom-thin Cu islands are poor Brønsted bases relative to Oa on bulk Cu surfaces, consistent with results for adsorbed water. Results on high-area Cu/ZnO catalysts are discussed in the light of these new results.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H.H. Kung, Catal. Rev. Sci. Eng. 22 (1980) 235.

    Google Scholar 

  2. [2]

    R.G. Herman, K. Klier, G.W. Simmons, B.P. Finn and H.B. Bulko, J. Catal. 56 (1979) 407.

    Google Scholar 

  3. [3]

    K. Klier, Adv. Catal. 31 (1982) 243.

    Google Scholar 

  4. [4]

    G.C. Chinchen, P.J. Denny, J.R. Jennings, M.S. Spencer and K.C. Waugh, Appl. Catal. 36 (1988) 1.

    Google Scholar 

  5. [5]

    M. Bowker, R.A. Hadden, H. Houghton, J.N.K. Hyland and K.C. Waugh, J. Catal. 109 (1988) 263.

    Google Scholar 

  6. [6]

    J.F. Edwards and G.L. Schrader, J. Phys. Chem. 89 (1985) 782.

    Google Scholar 

  7. [7]

    G.J. Millar, C.H. Rochester and K.C. Waugh, J. Chem. Soc. Faraday Trans. 88 (1992) 2257.

    Google Scholar 

  8. [8]

    S.G. Neophytides, A.J. Marchi and G.F. Froment, Appl. Catal. A 86 (1992) 45.

    Google Scholar 

  9. [9]

    I.E. Wachs and R.J. Madix, J. Catal. 53 (1978) 208.

    Google Scholar 

  10. [10]

    M. Bowker and R.J. Madix, Surf. Sci. 95 (1980) 190.

    Google Scholar 

  11. [11]

    B.A. Sexton, Surf. Sci. 88 (1979) 299.

    Google Scholar 

  12. [12]

    B.A. Sexton, A.E. Hughes and N.A. Avery, Appl. Surf. Sci. 22/23 (1985) 404.

    Google Scholar 

  13. [13]

    B.A. Sexton, A.E. Hughes and N.A. Avery, Surf. Sci. 155 (1985) 366.

    Google Scholar 

  14. [14]

    R. Ryberg, J. Chem. Phys. 82 (1985) 567.

    Google Scholar 

  15. [15]

    J.N. Russell Jr. S.M. Gates and J.T. Yates Jr., Surf. Sci. 163 (1985) 516.

    Google Scholar 

  16. [16]

    A. Peremans, F. Maseri, J. Darville and J.-M. Gilles, J. Vac. Sci. Technol. A 8 (1990) 3224.

    Google Scholar 

  17. [17]

    W.H. Cheng, S. Akhter and H.H. Kung, J. Catal. 82 (1983) 341.

    Google Scholar 

  18. [18]

    S. Akhter, W.H. Cheng and H.H. Kung, J. Catal. 85 (1984) 437.

    Google Scholar 

  19. [19]

    S. Akhter, K. Lui and H.H. Kung, J. Phys. Chem. 89 (1985) 1958.

    Google Scholar 

  20. [20]

    W. Hirschwald and D. Hofmann, Surf. Sci. 140 (1984) 415.

    Google Scholar 

  21. [21]

    J. Tobin, W. Hirschwald and J. Cunningham, Spectrochim. Acta 40 B (1985) 725.

    Google Scholar 

  22. [22]

    G. Zwicker, K. Jacobi and J. Cunningham, Int. J. Mass Ion Proc. 60 (1984) 213.

    Google Scholar 

  23. [23]

    J.M. Vohs and M.A. Barteau, Surf. Sci. 176 (1986) 91.

    Google Scholar 

  24. [24]

    S.S. Fu and G.A. Somorjai, J. Phys. Chem. 96 (1992) 4542.

    Google Scholar 

  25. [25]

    K. Tohji and Y. Udagawa, J. Phys. Chem. 89 (1985) 5671.

    Google Scholar 

  26. [26]

    G.D. Moggridge, T. Rayment, R.M. Ormerod, M.A. Morris and R.M. Lambert, Nature 358 (1992) 658.

    Google Scholar 

  27. [27]

    B.S. Clausen, B. Lengeler, B.S. Rasmussen, W. Niemann and H. Topsøe, J. Phys. (Paris) 47 (1986) 237.

    Google Scholar 

  28. [28]

    B. Peplinski, W.E.S. Unger and I. Grohmann, Appl. Surf. Sci. 62 (1992) 115.

    Google Scholar 

  29. [29]

    B.E. Goodby and J.E. Pemberton, Appl. Spectry. 42 (1988) 754.

    Google Scholar 

  30. [30]

    T.H. Fleisch and R.L. Mieville, J. Catal. 90 (1984) 165.

    Google Scholar 

  31. [31]

    K.H. Ernst, A. Ludviksson, R. Zhang, J. Yoshihara and C.T. Campbell, Phys. Rev. B 47 (1993) 13782.

    Google Scholar 

  32. [32]

    A. Ludviksson, K.H. Ernst, R. Zhang and C.T. Campbell, J. Catal. 141 (1993) 380.

    Google Scholar 

  33. [33]

    R. Zhang, A. Ludviksson and C.T. Campbell, Surf. Sci. 289 (1993) 1.

    Google Scholar 

  34. [34]

    A. Ludviksson, R. Zhang and C.T. Campbell, in preparation.

  35. [35]

    C.T. Campbell, K.A. Daube and J.M. White, Surf. Sci. 182 (1987) 458.

    Google Scholar 

  36. [36]

    S.V. Didziulis, K.D. Butcher, S.L. Cohen and E.I. Soloman, J. Am. Chem. Soc. 111 (1989) 7110.

    Google Scholar 

  37. [37]

    R. Zhang and A.J. Gellman, J. Phys. Chem. 95 (1991) 7433.

    Google Scholar 

  38. [38]

    A.J. Gellman, private communication.

  39. [39]

    Q. Dai and A.J. Gellman, J. Phys. Chem. 97 (1993) 10783.

    Google Scholar 

  40. [40]

    R. Zenobi, J. Xu, J.T. Yates, B.N.J. Persson and A.I. Volokitin, Chem. Phys. Lett. 208 (1993) 414.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, R., Ludviksson, A. & Campbell, C.T. The chemisorption of methanol on Cu films on ZnO(000¯1)-O. Catal Lett 25, 277–292 (1994). https://doi.org/10.1007/BF00816308

Download citation

Keywords

  • Cu/ZnO catalysts
  • methanol synthesis catalysts
  • model catalysts based on single crystals
  • metal-support interactions
  • surface chemistry of Cu/ZnO
  • methanol adsorption