Catalysis Letters

, Volume 25, Issue 1–2, pp 75–86 | Cite as

Methane coupling at low temperatures on Ru(0001) and Ru(11¯20) catalysts

  • Petra Lenz-Solomun
  • Ming-Cheng Wu
  • D. Wayne Goodman
Article

Abstract

The conversion of methane to higher hydrocarbons on single crystal Ru catalysts has been investigated using combined elevated-pressure kinetic measurements/surface science studies. The reaction consists of activation of methane on Ru(0001) and Ru(11¯20) surfaces to produce carbonaceous intermediates at temperatures\(\left( {T_{CH_4 } } \right)\) between 350 and 700 K and rehydrogenation of these species to ethane and propane at\(T_{H_2 } \) ≈ 370 K. It is found that under the reaction conditions employed, the maximum yield in ethane/propane production occurs at\(T_{CH_4 } \) ≈ 500 K on both surfaces. Influence of the hydrogenation temperature on the production of ethane and propane is also examined. On Ru(0001), the yields of ethane and propane maximize at\(T_{H_2 } \) = 400 K, whereas no maximum yield was observed on Ru(11\(\bar 2\)0) in the 300–500 K temperature range. Under optimum reaction conditions, hydrocarbon products consist of 16% ethane and 2% propane. High-resolution electron energy-loss spectroscopy (HREELS) has been used to identify various forms of hydrocarbonaceous intermediates following methane decomposition. An effort is made to relate the hydrocarbon intermediates identified by HREELS to the gas phase products observed in the elevated pressure experiments.

Keywords

Methane conversion single crystal Ru catalyst kinetic studies surface science studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.R. Rostrup-Nielsen,Catalysis: Science and Technology, eds. J.R. Anderson and M. Boudart (Springer, Berlin, 1984).Google Scholar
  2. [2]
    M.A. Vannice, Catal. Rev.-Sci. Eng. 14 (1976) 153.Google Scholar
  3. [3]
    H. Pichter, Advan. Catal. 4 (1952) 271.Google Scholar
  4. [4]
    T. Ito and J.H. Lunsford, Nature 314 (1985) 721.Google Scholar
  5. [5]
    D.J. Driscoll, W. Martir, J.-X. Wang and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 58.Google Scholar
  6. [6]
    T. Ito, J.-X. Wang, C.-H. Lin and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 5062.Google Scholar
  7. [7]
    T. Koerts and R.A. van Santen, J. Chem. Soc. Chem. Commun. (1991) 1281.Google Scholar
  8. [8]
    K. Coulter and D.W. Goodman, Catal. Lett. 16 (1992) 191.Google Scholar
  9. [9]
    J.H. Lunsford, Catal. Today 6 (1990) 235.Google Scholar
  10. [10]
    T. Koerts and R.A. van Santen, J. Chem. Soc. Chem. Commun. (1991) 1281.Google Scholar
  11. [11]
    T. Koerts, M.J.A.G. Deelen and R.A. van Santen, J. Catal. 138 (1992) 101.Google Scholar
  12. [12]
    T. Koerts and R.A. van Santen, J. Mol. Catal. 70 (1991) 119.Google Scholar
  13. [13]
    G.C. Bond,Catalysis by Metals (Academic Press, New York, 1962).Google Scholar
  14. [14]
    M.B. Lee and Q.Y. Yang, J. Chem. Phys. 85 (1986) 1693.Google Scholar
  15. [15]
    J.D. Beckerle, Q.Y. Yang, A.D. Johnson and S.T. Ceyer, J. Chem. Phys. 86 (1987) 7236.Google Scholar
  16. [16]
    M.T. Travares, C.A. Bernardo, J. Alstrup and J.R. Rostrup-Nielsen, J. Catal. 100 (1986) 545.Google Scholar
  17. [17]
    S.G. Brass and G. Ehrlich, Surf. Sci. 191 (1987) L819.Google Scholar
  18. [18]
    S.G. Brass and G. Ehrlich, Surf. Sci. 187 (1987) 21.Google Scholar
  19. [19]
    E.G.M. Kuijpers, J.W. Janson, A.J. VanDillen and J.W. Geuss, J. Catal. 72 (1981) 75.Google Scholar
  20. [20]
    Y.K. Sun and W.H. Weinberg, J. Vac. Sci. Technol. A 8 (1990) 2445.Google Scholar
  21. [21]
    A.G. Sault and D.W. Goodman, Advan. Chem. Phys. 76 (1989) 153.Google Scholar
  22. [22]
    M.B. Lee, Q.Y. Yang and S.T. Ceyer, J. Chem. Phys. 87 (1987) 2724.Google Scholar
  23. [23]
    A.D. Johnson, J. Maynard, S.P. Daley, Q.Y. Yang and S.T. Ceyer, Phys. Rev. Lett. 67 (1991) 927.Google Scholar
  24. [24]
    J.D. Beckerle, A.D. Johnson, Q.Y. Yang and S.T. Ceyer, J. Chem. Phys. 91 (1989) 5756.Google Scholar
  25. [25]
    J.D. Beckerle, A.D. Johnson and S.T. Ceyer, J. Am. Chem. Soc. 62 (1989) 685.Google Scholar
  26. [26]
    T.M. Duncan, P. Winslow and A.T. Bell, J. Catal. 93 (1985) 1.Google Scholar
  27. [27]
    P. Winslow and A.T. Bell, J. Catal. 86 (1984) 158.Google Scholar
  28. [28]
    T.M. Duncan, P. Winslow and A.T. Bell, J. Catal. 95 (1985) 226.Google Scholar
  29. [29]
    M.-C. Wu, C.A. Estrada, J.S. Corneille and D.W. Goodman, J. Chem. Phys. 96 (1992) 3892.Google Scholar
  30. [30]
    D.W. Goodman and J.M. White, Surf. Sci. 90 (1979) 201.Google Scholar
  31. [31]
    G. Lauth, E. Schwartz and K. Christman, J. Chem. Phys. 91 (1989) 3729.Google Scholar
  32. [32]
    G. Lauth, T. Solomun, W. Hirschwald and K. Christman, Surf. Sci. 210 (1989) 201.Google Scholar
  33. [33]
    M.-C. Wu and D.W. Goodman, J. Am. Chem. Soc., in press.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Petra Lenz-Solomun
    • 1
  • Ming-Cheng Wu
    • 1
  • D. Wayne Goodman
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations