Catalysis Letters

, Volume 40, Issue 3–4, pp 131–135 | Cite as

Designing surface alloys with specific active sites

  • P. M. Holmblad
  • J. HvolbÆk Larsen
  • I. Chorkendorff
  • L. Pleth Nielsen
  • F. Besenbacher
  • I. Stensgaard
  • E. LÆgsgaard
  • P. Kratzer
  • B. Hammer
  • J. K. NØrskov
Article

Abstract

This report describes a combined experimental and theoretical approach to the problem of designing surface alloys with specific chemical properties. Au-Ni(111) surface alloys were prepared and the distribution of active sites was determined by atomically resolved STM as a function of Au coverage. Using density functional theory the difference in activation energy for methane over the various sites was determined. The activity of the surface could be predicted directly by combining this information with the distribution of sites. Subsequent measurements of the activity proved this method to be quantitative and demonstrated that surface alloys with specific activity can be synthesized.

Keywords

active sites surface alloys STM molecular beams activation barriers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.H. Sinfelt,Bimetallic Catalysts: Discoveries, Concepts, and Applications (Wiley, New York, 1983).Google Scholar
  2. [2]
    V. Ponec, Adv. Catal. 32 (1983) 149.Google Scholar
  3. [3]
    G.A. Somorjai,Surface Chemistry and Catalysis (Wiley, New York, 1994).Google Scholar
  4. [4]
    N.T. Andersen, F. TopsØe, I. Alstrup and J.R. Rostrup-Nielsen, J. Catal. 104 (1987) 454.Google Scholar
  5. [5]
    A.M. Schoeb, T.J. Raeker, L. Yang, T.S. King and A.E. DePristo, Surf. Sci. 278 (1992) L125.Google Scholar
  6. [6]
    Y.L. Lam, J. Chiado and M. Boudart, Nouv. J. Chim. 1 (1977) 461.Google Scholar
  7. [7]
    J.A. Rodriguez and D.W. Goodman, Science 257 (1992) 897.Google Scholar
  8. [8]
    L. Pleth Nielsen, F. Besenbacher, I. Stensgaard, E. LÆgsgaard, C. Engdahl, P. Stoltze, K.W. Jacobsen and J.K. NØrskov, Phys. Rev. Lett. 71 (1993) 754.Google Scholar
  9. [9]
    F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen,Cohesion in Metals (North-Holland, Amsterdam, 1988).Google Scholar
  10. [10]
    T.P. Beebe Jr., D.W. Goodman, B.D. Kay and J.T. Yates, J. Chem. Phys. 87 (1987) 2305.Google Scholar
  11. [11]
    A. Luntz and J. Harris, Surf. Sci. 258 (1991) 397.Google Scholar
  12. [12]
    M.B. Lee, Q.Y. Yang and S.T. Ceyer, J. Chem. Phys. 87 (1987) 2724.Google Scholar
  13. [13]
    P.M. Holmblad, J. Wambach and I. Chorkendorff, J. Chem. Phys. 102 (1995) 8255.Google Scholar
  14. [14]
    H. Burghgraef, A.P.J. Jansen and R.A. van Santen, J. Chem. Phys. 101 (1994) 11012; R.A. van Santen and M. Neurock, Concepts in theoretical heterogeneous catalytic reactivity, Catal. Rev., in press.Google Scholar
  15. [15]
    H. Yang and J.L. Whitten, J. Chem. Phys. 96 (1992) 5529.Google Scholar
  16. [16]
    O. Swang, J.K. Faegri, O. Gropen, U. Wahlgren and P.E. M. Siegbahn, Chem. Phys. 156 (1991) 379.Google Scholar
  17. [17]
    P. Kratze, B. Hammer and J.K. NØrskov, J. Chem. Phys. (1996), submitted.Google Scholar
  18. [18]
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Rev. Mod. Phys. 64 (1992) 1045.Google Scholar
  19. [19]
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais, Phys. Rev. B 46 (1992) 6671.Google Scholar
  20. [20]
    P.M. Holmblad, J. HvolbÆk Larsen and I. Chorkendorff, J. Chem. Phys. (1996), in press.Google Scholar
  21. [21]
    J.R. Rostrup-Nielsen, J. Catal. 85 (1984) 31.Google Scholar
  22. [22]
    I. Alstrup and M.T. Tavares. J. Catal. 139 (1993) 513.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • P. M. Holmblad
    • 1
  • J. HvolbÆk Larsen
    • 1
  • I. Chorkendorff
    • 1
  • L. Pleth Nielsen
    • 2
  • F. Besenbacher
    • 2
  • I. Stensgaard
    • 2
  • E. LÆgsgaard
    • 2
  • P. Kratzer
    • 1
  • B. Hammer
    • 1
    • 3
  • J. K. NØrskov
    • 1
  1. 1.Center for Atomic-Scale Materials Physics, Department of PhysicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Center for Atomic-Scale Materials Physics, Institute of Physics and AstronomyUniversity of AarhusAarhus CDenmark
  3. 3.Joint Research Center for Atom Technology (JRCAT)IbarakiJapan

Personalised recommendations