Catalysis Letters

, Volume 42, Issue 1–2, pp 41–45 | Cite as

Chloromethoxyl and dichloromethoxyl formation on zeolite ZnY, an in situ NMR and flow reactor study

  • Thomas R. Krawietz
  • Patrick W. Goguen
  • James F. Haw


In situ13C and27Al MAS NMR and flow reactor studies were used to study the decomposition of dichloromethane and chloroform on zeolite ZnY. The initially formed products were framework-bound chloromethoxyl (from dichloromethane) and dichloromethoxyl (from chloroform) species, analogous to the non-halogenated alkoxyls observed in previous investigations. The principal components of the13C chemical shift tensors were: chloromethoxyl,δ11 = 116 ppm,δ22 = 79 ppm andδ33 = 37 ppm; dichloromethoxyl,δ11= 128 ppm,δ22= 91 ppm andδ33 = 65 ppm. Formation of both species occurred at 298 K, and each decomposed at 423 K. This decomposition formed HCl which dealuminated the zeolite (as monitored by27Al MAS NMR) causing deactivation (flow reactor studies). Further evidence for the destruction of the zeolite was the NMR observation of CO formation, implying incorporation of oxygen from zinc hydroxyl or framework sites. Although ZnY is shown to be unsuitable for catalytic chlorocarbon destruction, the observation of chloromethoxyl and dichloromethoxyl species is significant, and the formation of halogenated alkoxyl species should be considered in future investigations of halocarbon chemistry on oxides and molecular sieves.


dichloromethane chloroform zeolite alkoxyl 13C MAS NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.F. Haw, B.R. Richardson, I.S. Oshiro, N.D. Lazo and J.A. Speed, J. Am. Chem. Soc. 111 (1989) 2052.Google Scholar
  2. [2]
    J.F. Haw, J.B. Nicholas, T. Xu, L.W. Beck and D.B. Ferguson, Acc. Chem. Res. 29 (1996) 259.Google Scholar
  3. [3]
    M.T. Aronson, R.J. Gorte, W.E. Farneth and D. White, J. Am. Chem. Soc. 111 (1989) 840.Google Scholar
  4. [4]
    A.G. Stepanov, K.I. Zamaraev and J.M. Thomas, Catal. Lett. 13 (1992) 407.Google Scholar
  5. [5]
    D.K. Murray, J.-W. Chang and J.F. Haw, J. Am. Chem. Soc. 115 (1993) 4732.Google Scholar
  6. [6]
    D.K. Murray, T. Howard, P.W. Goguen, T.R. Krawietz and J.F. Haw, J. Am. Chem. Soc. 116 (1994) 6354.Google Scholar
  7. [7]
    V. Bosácek, J. Phys. Chem. 97 (1993) 10732.Google Scholar
  8. [8]
    T. Tao and G.E. Maciel, J. Am. Chem. Soc 117 (1995) 12889.Google Scholar
  9. [9]
    C.P. Grey and D.R. Corbin, J. Phys. Chem. 99 (1995) 16821.Google Scholar
  10. [10]
    V.B. Kazansky, Acc. Chem. Res. 24 (1991) 379.Google Scholar
  11. [11]
    R.A. van Santen and G.J. Kramer, Chem. Rev. 95 (1995) 637.Google Scholar
  12. [12]
    Y. Xiong, P.G. Rodewald and C.D. Chang, J. Am. Chem. Soc. 117 (1995) 9427.Google Scholar
  13. [13]
    R. Steinman, F.B. Schirmer Jr. and L.F. Audrieth, J. Am. Chem. Soc. 64 (1942) 2377.Google Scholar
  14. [14]
    E.J. Munson, D.K. Murray and J.F. Haw, J. Catal. 141 (1993) 733.Google Scholar
  15. [15]
    S.J. Opella and M.H. Frey, J. Am. Chem. Soc. 101 (1979) 5854.Google Scholar
  16. [16]
    L.W. Beck, J.L. White and J.F. Haw, J. Am. Chem. Soc. 116 (1994) 9657.Google Scholar
  17. [17]
    J. Herzfeld and A. Berger, J. Chem. Phys. 73 (1980) 6021.Google Scholar
  18. [18]
    W.W. Simons,The Sadtler Guide to Carbon-13 NMR Spectra, Vol. 4 (Sadtler, Philadelphia, 1983) p. 666C.Google Scholar
  19. [19]
    E.M. Menger and W.S. Veeman, J. Magn. Reson. 46 (1982) 257.Google Scholar
  20. [20]
    A.C. Olivieri, J. Magn. Reson. A 101 (1993) 313.Google Scholar
  21. [21]
    S.H. Alarcon, A.C. Olivieri, S.A. Carss and R.H. Harris, Angew. Chem. Int. Ed. Engl. 33 (1994) 1624.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Thomas R. Krawietz
    • 1
  • Patrick W. Goguen
    • 1
  • James F. Haw
    • 1
  1. 1.Laboratory for Magnetic Resonance and Molecular Science, Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations