Catalysis Letters

, Volume 33, Issue 3–4, pp 331–339 | Cite as

Hydrogenative ring opening of propylcyclopropane over silica-supported Pt and Pd catalysts

  • Béla Török
  • árpád Molnár
  • Mihály Bartók
Article

Abstract

The effects of temperature and hydrogen pressure on the hydrogenative ring opening of propylcyclopropane over Pt/SiO2 and Pd/SiO2 catalysts were studied. Temperature dependence in the 323–373 K temperature range in a pulse system was investigated, while a static recirculation reactor was used for hydrogen pressure dependence measurements. The ring-opening reactions took place exclusively at all temperatures and hydrogen pressures studied. Monotonous increase was observed for the reactivity of propylcyclopropane as a function of temperature. At constant temperature, the reaction rate vs. hydrogen pressure dependence curves passed through a maximum indicating dissociative adsorption over both Pt and Pd catalysts. The scission of the sterically less hindered direction (producing 2-methylpentane) was the major reaction pathway on both catalysts with practically identical regioselectivity values. On the basis of these results aselective mechanism was proposed for the ring-opening reaction.

Keywords

propylcyclopropane Pt and Pd/SiO2 catalysts effects of temperature and hydrogen pressure mechanism of ring opening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [[1]
    J. Newham, Chem. Rev. 63 (1963) 123.Google Scholar
  2. [2]
    Z. Paál and P. Tétényi, in:Specialist Periodical Reports on Catalysis, Vol. 5 (The Royal Society of Chemistry, London, 1982) p. 80;Google Scholar
  3. [2a]
    Z. Paál, Adv. Catal. 29 (1980) 273.Google Scholar
  4. [3]
    F.G. Gault, Adv. Catal. 30 (1981) 1.Google Scholar
  5. [4]
    M. Bartók and á.G. Zsigmond, in:Stereochemistry of Heterogeneous Metal Catalysis (Wiley, Chichester, 1985) p. 17.Google Scholar
  6. [5]
    I. Pálinkó, F. Notheisz and M. Bartók, J. Mol. Catal. 63 (1990) 43;Google Scholar
  7. [5a]
    I. Pálinkó, F. Notheisz and M. Bartók, J. Mol. Catal. 77 (1992) 313.Google Scholar
  8. [6]
    F. Notheisz, I. Pálinkó and M. Bartók, Catal. Lett. 5 (1990) 229;Google Scholar
  9. [6a]
    I. Pálinkó, F. Notheisz and M. Bartók, J. Mol. Catal. 68 (1991) 237.Google Scholar
  10. [7]
    J. Addy and G.C. Bond, Trans. Faraday Soc. 53 (1957) 368;Google Scholar
  11. [7a]
    G.C. Bond and J. Newham, Trans. Faraday Soc. 56 (1960) 1501;Google Scholar
  12. [7b]
    D.W. McKee, J. Phys. Chem. 67 (1963) 1336.Google Scholar
  13. [8]
    Z. Knor, V. Ponec, Z. Herman, Z. Dolejsek and S. Cerny, J. Catal. 2 (1963) 299;Google Scholar
  14. [8a]
    J.R. Anderson and N.R. Avery, J. Catal. 8 (1967) 48;Google Scholar
  15. [8b]
    T.S. Sridhar and D.M. Ruthven, J. Catal. 16 (1970) 363;Google Scholar
  16. [8c]
    H.F. Wallace and K.E. Hayes, J. Catal. 29 (1973) 83;Google Scholar
  17. [8d]
    L.L. Hegedüs and E.E. Petersen, J. Catal. 28 (1973) 150;Google Scholar
  18. [8e]
    S. Cerny, M. Smutek, F. Buzek and A. Curinova, J. Catal. 47 (1977) 159.Google Scholar
  19. [9]
    M.S. Touvelle and P.C. Stair, J. Catal. 130 (1991) 556; 139 (1993) 93.Google Scholar
  20. [10]
    G.C. Bond and R. Yahya, J. Mol. Catal. 68 (1991) 243.Google Scholar
  21. [11]
    J.B. Butt and R.L. Burwell Jr., Catal. Today 12 (1992) 177.Google Scholar
  22. [12]
    B. Török, I. Pálinkó, á. Molnár and M. Bartók, J. Catal. 143 (1993) 111;Google Scholar
  23. [12a]
    M. Bartók, B. Török, á. Molnár and J. Apjok, React. Kinet. Catal. Lett. 49 (1993) 111.Google Scholar
  24. [13]
    B. Török, á. Molnár, I. Pálinkó and M. Bartók, J. Catal. 145 (1994) 295;Google Scholar
  25. [13a]
    B. Török, I. Pálinkó, á. Molnár and M. Bartók, J. Mol. Catal. 91 (1994) 61;Google Scholar
  26. [13b]
    B. Török and M. Bartók, J. Catal. 151 (1995) 315.Google Scholar
  27. [14]
    M. Bartók, F. Notheisz and á.G. Zsigmond, J. Catal. 63 (1980) 364.Google Scholar
  28. [15]
    M. Boudart and G. Djéga-Mariadassou,Kinetics of Heterogeneous Catalytic Reactions (Princeton University Press, Princeton, 1982).Google Scholar
  29. [16]
    W. Palczewska, Adv. Catal. 24 (1975) 245; in:Hydrogen Effects in Catalysis. Fundamentals and Practical Applications, eds. Z. Paál and P.G. Menon (Dekker, New York, 1988) ch. 14;Google Scholar
  30. [16a]
    R.H.E. Cardenas and D.E. Damiani, in:Catalyst Deactivation 1991, eds. C.H. Bartholomew and J.B. Butt (Eisevier, Amsterdam, 1991) p. 667.Google Scholar
  31. [17]
    R. Pitchai, S.S. Wong, N. Takahashi, J.B. Butt, R.L. Burwell Jr. and J.B. Cohen, J. Catal. 94 (1985) 478.Google Scholar
  32. [18]
    R.K. Nandi, R. Pitchai, S.S. Wong, J.B. Cohen, R.L. Burwell Jr. and J.B. Butt, J. Catal. 70 (1981) 298.Google Scholar
  33. [19]
    Z. Paál and P.G. Menon, eds.,Hydrogen Effects in Catalysis. Fundamentals and Practical Applications (Dekker, New York, 1988).Google Scholar
  34. [20]
    H. Pines and L. Nogueira, J. Catal. 27 (1972) 89;Google Scholar
  35. [20a]
    M.Yu. Lukina, V.A. Ovodova and B.A. Kazanskii, Dokl. Akad. Nauk SSSR 97 (1954) 683;Google Scholar
  36. [20b]
    N.A. Rosanov, J. Russ. Phys. Chem. Soc. 48 (1916) 168.Google Scholar
  37. [21]
    B. Török, M. Török and M. Bartók, Catal. Lett. 33 (1995) 321.Google Scholar
  38. [22]
    Z. Paál and M. Dobrovolszky, React. Kinet. Catal. Lett. 1 (1974) 435;Google Scholar
  39. [22a]
    Z. Paál, M. Dobrovolszky and P. Tétényi, React. Kinet. Catal. Lett. 2 (1975) 97.Google Scholar
  40. [23]
    B. Török, I. Pálinkó and M. Bartók, Catal. Lett. 31 (1995) 421.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • Béla Török
    • 1
  • árpád Molnár
    • 1
  • Mihály Bartók
    • 1
  1. 1.Department of Organic Chemistry, Center for Catalysis, Surface and Material ScienceJózsef Attila UniversitySzegedHungary

Personalised recommendations