Catalysis Letters

, Volume 33, Issue 3–4, pp 269–277 | Cite as

Two-dimensional oxide catalysts: propene oxidation on FeSbO4

  • M. D. Alien
  • M. Bowker


FeSbO4 catalysts used for selective propene oxidation/ammoxidation have been examined using a combination of XPS and TPD before and after ammonia reduction. These data indicate that the surface has a thin “skin” which is enriched in antimony oxide. This “skin” is shown to be important for selective oxidation. This two-dimensional oxide covering can be reduced to metallic antimony after only low pressure treatment in ammonia and the metallic layer can be desorbed upon heating above 600 K. The remaining surface is then covered with an Fe-rich layer which is not so easily reduced, and which is of lower selectivity in partial oxidation to acrolein.


propene ammonia selective oxidation ammoxidation FeSbO4 TPD XPS surface enrichment antimony oxide reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.D. Idol, US Patent 2 904 580 (1959).Google Scholar
  2. [2]
    J.L. Callahan, R.W. Forman and F. Veatch, US Patent 3 044 966 (1962).Google Scholar
  3. [3]
    J.L. Callahan and B. Gertisser, US Patent 3 198 750 (1965).Google Scholar
  4. [4]
    T. Bethall and D.T. Hadley, US Patent 3 094 565 (1963).Google Scholar
  5. [5]
    T. Yoshino, S. Saito and M. Sobukawa, Jap. Patent 7 103 438 (1971).Google Scholar
  6. [6]
    T. Yoshino, S. Saito, Y. Sasaki and Y. Nakamura, Jap. Patents 3 657 155 (1972); 3 686 138 (1972).Google Scholar
  7. [7]
    M. Allen, R. Batteley, M. Bowker and G.J. Hutchings, Catal. Today 9 (1991) 97.Google Scholar
  8. [8]
    N. Burriesci, F. Garbassi, M. Peterera and G. Petrini, J. Chem. Soc. Farad. Trans. I 78 (1982) 817.Google Scholar
  9. [9]
    I. Aso, S. Furakawa, N. Yamazoe and T. Seiyama, J. Catal. 64 (1980) 29.Google Scholar
  10. [10]
    R.G. Teller, J.F. Brazdil and R.K. Grasselli, J. Chem. Soc. Farad. Trans. I 81 (1985) 1693.Google Scholar
  11. [11]
    F.J. Berry, J.G. Holden and M.H. Loretto, J. Chem. Soc. Farad. Trans. I 83 (1987) 615.Google Scholar
  12. [12]
    A. Proctor and D.M. Hercules, Appl. Spectry. 38 (1984) 505.Google Scholar
  13. [13]
    J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben,Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer (Phys. Elect. Division), 1992).Google Scholar
  14. [14]
    C.R. Brundle, T.J. Chuang and K. Wandelt, Surf. Sci. 68 (1977) 459.Google Scholar
  15. [15]
    H.E. Bishop, Surf. Interf. Anal. 3 (1981) 6.Google Scholar
  16. [16]
    M.P. Briggs and D. Seah,Practical Surface Analysis (Wiley, New York, 1990).Google Scholar
  17. [17]
    W.E. Morgan, W.J. Stec and J.R. Van Wazer, Inorg. Chem. 12 (1973) 953.Google Scholar
  18. [18]
    C.D. Wagner, Discussions Farad. Soc. 60 (1975) 291.Google Scholar
  19. [19]
    Y. Moro-oka and W. Ueda, Advan. Catal., in press.Google Scholar
  20. [20]
    V. Fattore, Z. Fuhrman, G. Manara and B. Notari, J. Catal. 37 (1975) 223.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1995

Authors and Affiliations

  • M. D. Alien
    • 1
  • M. Bowker
    • 1
  1. 1.Department of ChemistryUniversity of ReadingReadingUK

Personalised recommendations