Advertisement

Amino Acids

, Volume 7, Issue 2, pp 117–127 | Cite as

Plasma membrane guanylate cyclase is a multimodule transduction system

  • R. K. Sharma
  • T. Duda
  • A. Sitaramayya
Minireview Article

Summary

This minireview highlights the studies which suggest that guanylate cyclase is a single-component transducing system, containing distinct signaling modules in a single membrane-spanning protein. A guanylate cyclase signaling model is proposed which envisions the following sequential events: (1) a signal is initiated by the binding of the hormone to the ligand binding module; (2) the signal is potentiated by ATP at ARM; and (3) the amplified signal is finally transduced at the catalytic site. All of these signaling steps together constitute a switch, which when turned on, generates the second messenger cyclic GMP.

Keywords

Amino acids Guanylate cyclase ATP-Regulatory Module Atrial natriuretic factor receptor Type C natriuretic factor receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballermann BJ, Marala RB, Sharma RK (1988) Characterization and regulation by protein kinase C of renal glomerular atrial natriuretic peptide receptor-coupled guanylate cyclase. Biochem Biophys Res Commun 157: 755–761Google Scholar
  2. Ballermann P, Neuser D (1988) Modulation of ANP receptor-mediated cGMP accumulation by atrial natriuretic peptides and vasopressin in A10 vascular smooth muscle cells. J Receptor Res 8: 407–417Google Scholar
  3. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological activities of atrial natriuretic peptides. Physiological Rev 70: 665–699Google Scholar
  4. Chang CH, Kohse KP, Chang B, Hirata M, Jiang B, Douglass JE, Murad F (1990) Characterization of ATP-stimulated guanylate cyclase activation in rat lung membranes. Biochim Biophys Acta 1052: 159–165Google Scholar
  5. Chang M-S Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341: 68–72Google Scholar
  6. Chinkers M, Garbers DL (1989) The protein kinase domain of the ANP receptor is required for signaling. Science 245: 1392–1394Google Scholar
  7. Chinkers M, Garbers DL, Chang M-S, Lowe DG, Chin H, Goeddel DV, Schulz S (1989) Molecualr cloning of a new type of cell surface receptor: A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338: 78–83Google Scholar
  8. Chinkers M, Singh S, Garbers DL (1991) Adenine nucleotides are required for activation of rat atrial natriuretic factor receptor/guanylate cyclase expressed in a baculovirus system. J Biol Chem 266: 4088–4093Google Scholar
  9. Crane JK, Wehner MS, Bolen EJ, Sando JJ, Linden J, Guerrant RL, Sears CL (1992) Regulation of intestinal guanylate cyclase by the heat-stable enterotoxin ofEscherichia coli (STa) and protein kinase C. Infect Immun 60: 5004–5012Google Scholar
  10. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith, CE (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89: 947–951Google Scholar
  11. deBold AJ (1985) Atrial natriuretic factor; a hormone produced by the heart. Science 230: 767–770Google Scholar
  12. de Sauvage FJ, Cameroto TR, Goeddel DV (1991) Primary structure and functional expression of the human receptor forEscherichia coli heat stable enterotoxin. J Biol Chem 266: 17912–17918Google Scholar
  13. Duda T, Sharma RK (1990) Regulation of guanylate cyclase activity by atrial natriuretic factor and protein kinase C. Mol Cell Biochem 93: 179–184Google Scholar
  14. Duda T, Goraczniak RM, Sharma RK (1991) Site-directed mutational analysis of a membrane guanylate cyclase cDNA reveals the atrial natriuretic factor signaling site. Proc Natl Acad Sci USA 88: 7882–7886Google Scholar
  15. Duda T, Goraczniak RM, Sharma RK (1993a) Core sequence of ATP regulatory module in receptor guanylate cyclase. FEBS Lett 315: 143–148Google Scholar
  16. Duda T, Goraczniak RM, Sitaramayya A, Sharma RK (1993b) Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylate cyclase. Biochemistry 32: 1391–1395Google Scholar
  17. Fleichman D, Denisevich M, Raveed D, Pannbacker RG (1980) Association of guanylate cyclase with the axoneme of retinal rods. Biochim Biophys Acta 630: 176–186Google Scholar
  18. Goraczniak RM, Duda T, Sharma RK (1992) Structural motif that defines ATP regulatory module of guanylate cyclase in atrial natriuretic factor signaling. Biochem J 282: 533–537Google Scholar
  19. Hakki S, Sitaramayya A (1990) Guanylate cyclase from bovine rod outer segments: solubilization, partial purification and regulation by inorganic pyrophosphate. Biochemistry 29: 1088–1094Google Scholar
  20. Hayashi F, Yamazaki A (1991) Polymorphism in purified guanylate cyclase from vertebrated rod photoreceptors. Proc Natl Acad Sci USA 88: 4746–4750Google Scholar
  21. Iwata T, Vaughn J, Frolich ED, Cole PE (1991) Phorbol and calcium decreased triopeptin response in a human renal cell-line. Peptides 12: 301–307Google Scholar
  22. Jaiswal RK, Jaiswal N, Sharma RK (1988) Negative regulation of atrial natriuretic factor receptor coupled membrane guanylate cyclase by phorbol ester: potential protein kinase C regulation of cyclic GMP signal in isolated adrenocortical carcinoma cells of rat. FEBS Lett 227: 47–50Google Scholar
  23. Jewett JRS, Koller KJ, Goeddel DV, Lowe DG (1993) Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J 12: 769–777Google Scholar
  24. Koch K-W (1991) Purification and identification of photoreceptor guanylate cyclase. J Biol Chem 266: 8634–8637Google Scholar
  25. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252: 12–123Google Scholar
  26. Krishnan N, Flechter RT, Chader GJ, Krishna G (1978) Characterization of guanylate cyclase of rod outer segments of bovine retina. Biochim Biophys Acta 523: 506–515Google Scholar
  27. Kuno T, Andresson W, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261: 5817–5823Google Scholar
  28. Kurose H, Inagami T, Ui M (1987) Participation of adenine 5′-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett 219: 375–379Google Scholar
  29. Larose L, McNicoll N, Ong H, DeLean AD (1991) Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions. Biochemistry 30: 8990–8995Google Scholar
  30. Larose L, Rondeau J-J, DeLean AD (1992) Phosphorylation of atrial natriuretic factor R1 receptor by serine/threonine protein kinases: evidence for receptor regulation. Mol Cell Biochem 93: 179–184Google Scholar
  31. Lowe DG, Chang MS, Hellmis R, Chen E, Singh S, Garbers DL, Goedel DV (1989) Human atrial natriuretic factor receptor defines a new paradigm for the second messenger signal transduction. EMBO J 8: 1377–1384Google Scholar
  32. Marala RB, Sharma RK (1992) Three immunologically similar atrial natriuretic factor receptors. Mol Cell Biochem 109: 71–75Google Scholar
  33. Marala RB, Sitaramayya A, Sharma RK (1991) Dual regulation of atrial natriuretic factor-dependent guanylate cyclase activity by ATP. FEBS Lett 281: 73–76Google Scholar
  34. Marala R, Duda T, Goraczniak RM, Sharma RK (1992) Genetically tailored atrial natriuretic factor-dependent guanylate cyclase: immunological and functional identity with 180 kDa membrane guanylate cyclase and ATP signaling site. FEBS Lett 296: 254–258Google Scholar
  35. Marala RB, Duda T, Sharma RK (1993) Interaction of atrial natriuretic factor and endothelin-1 signals through receptor guanylate cyclase in pulmonary artery endothelial cells. Mol Cell Biochem 120: 69–80Google Scholar
  36. Margulis A, Goraczniak RM, Duda T, Sharma RK, Sitaramayya A (1993) Structural and biochemical identity of retinal rod outer segment membrane guanylate cyclase. Biochem Biophys Res Commun 194: 855–861Google Scholar
  37. Meloche S, McNicoll N, Liu B, Ong H, DeLean AD (1988) Atrial natriuretic factor R1 receptor from bovine adrenal glomerulosa: purification, characterization, and modulation by amiloride. Biochemistry 27: 8151–8158Google Scholar
  38. Nambi P, Whitman M, Gessner G, Aiyar N, Crooke ST (1986) Vasopressin mediated inhibition of atrial natriuretic factor-stimulated cGMP accumulation in an established smooth muscle cell line. Proc Natl Acad Sci USA 83: 8492–8495Google Scholar
  39. Nambi P, Whitman M, Aiyar N, Stasse F, Crooke ST (1987) An activator of protein kinase C (phorbol dibutyrate) attenuates atrial-natriuretic-factor stimulated cyclic GMP accumulation in smooth-muscle cells. Biochem J 244: 481–484Google Scholar
  40. Needleman P, Blaine EH, Greenwald JE, Michener ML, Saper CB, Stockmann PT, Toulnay HE (1989) The biochemical pharmacology of atrial peptides. Annu Rev Pharm Tox 29: 23–54Google Scholar
  41. Paul AK, Marala RB, Jaiswal RK, Sharma RK (1987) Coexistence of atrial natriuretic factor receptor and guanylate cyclase in a Mr 180,000 protein of rat adrenocortical carcinoma membranes. Science 235: 1224–1226Google Scholar
  42. Rosenzweig A, Seidman CE (1991) Atrial natriuretic factor and related hormones. Annu Rev Biochem 60: 229–255Google Scholar
  43. Schulz S, Green CK, Yuen PST, Garbers DL (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 179: 941–948Google Scholar
  44. Sharma RK, Jaiswal RK, Duda T (1988a) Second messenger role of cyclic GMP in atrial natriuretic factor receptor mediated signal transduction: 180-kD membrane guanylate cyclase, its coupling with atrial natriuretic factor receptor and its regulation by protein kinase C. Biological and molecular aspects of atrial factor. In: Needleman P (ed) UCLA Symposia on Molecular and Cellular Biology, new series vol. 81. Alan R Liss, Inc., New York, pp 77–96Google Scholar
  45. Sharma RK, Marala RB, Paul AK (1988b) Mediatory role of cyclic GMP in receptor mediated signal transduction: membrane guanylate cyclase and its coupling with atrial natriuretic factor receptor. Advances in atrial peptide research, vol 2. In: Brenner BM, Laragh JH (eds) American Society of Hypertension Symposium Series. Raven Press, New York, pp 61–77Google Scholar
  46. Sharma RK, Duda T, Marala RB (1989a) A novel model depicting the protein kinase C regulation of atrial natriuretic factor-dependent 180-kDa membrane guanylate cyclase. Advances in atrial peptide research, vol. 3. In: Brenner BM, Laragh JH (eds) American Society of Hypertension Symposium Series, Raven Press, New York, pp 43–52Google Scholar
  47. Sharma RK, Marala RB, Duda T (1989b) Purification and characterization of 180 kDa membrane guanylate cyclase containing atrial natriuretic factor receptor from rat adrenal gland and its regulation by protein kinase C. Steroids: Nes Memorial Issue 53: 437–460Google Scholar
  48. Sitaramayya A, Marala RB, Hakki S, Sharma RK (1991) Interactions of nucleotide analogues with rod outer segment guanylate cyclase. Biochemistry 30: 6742–6746Google Scholar
  49. Shyjan AW, de Sauvage FJ, Gillet NA, Goeddel DV, Lowe DG (1992) Molecular cloning of a retina-specific guanylyl cyclase. Neuron 9: 727–737Google Scholar
  50. Snyder SH (1992) Nitric oxide: first in a new class of neurotransmitters. Science 257: 494–496Google Scholar
  51. Takayanagi KS, Snajdan RM, Imada T, Timura M, Pandey L, Misono KS, Inagami T (1987) Purification and characterization of two types of atrial natriuretic factor receptors from bovine adrenal cortex: guanylate cyclase linked and cyclase-free receptors. Biochem Biophys Res Commun 144: 244–250Google Scholar
  52. Thorpe DS, Morkin E (1990) The carboxyl region contains the catalytic domain of the membrane guanylate cycalse. J Biol Chem 265: 14717–14720Google Scholar
  53. Yuen PST, Garbers DL (1992) Guanylyl cyclase-linked receptors. Annu Rev Neurosciences 15: 193–225Google Scholar
  54. Wirenga RK, Hol WGJ (1983) Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302: 842–844Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. K. Sharma
    • 1
  • T. Duda
    • 1
  • A. Sitaramayya
    • 2
  1. 1.The Unit of Regulatory and Molecular BiologyPennsylvania College of OptometryPhiladelphiaUSA
  2. 2.Eye Research InstituteOakland UniversityRochesterUSA

Personalised recommendations