Soviet Physics Journal

, Volume 13, Issue 2, pp 190–193 | Cite as

Nonuniformity of the strain distribution during creep and extension

  • F. P. Rybalko
  • G. V. Gusev
  • E. A. Konovalova
Article
  • 13 Downloads

Abstract

A statistical method has been used for a quantitative study of the nonuniformity of the strain distribution during creep and static extension of polycrystalline aluminum (99.8%). During creep the nonuniformity of the strain distribution is controlled by elongation and, in contrast with the case of static extension, is nearly independent of the grain size, the temperature, and the stress. During creep the nonuniformity of the microscopic-strain distribution at large macroscopic-strain levels is more pronounced than during static extension.

Keywords

Aluminum Grain Size Statistical Method Quantitative Study Strain Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. M. Mekhontseva, F. P. Rybalko, and S. D. Volkov, Fiz. Tverd. Tela,8, 1275 (1966).Google Scholar
  2. 2.
    F. P. Rybalko, Izv. VUZ. Fiz., No. 6, 79 (1958); No. 1, 6 (1959); No. 2, 3 (1959).Google Scholar
  3. 3.
    F. P. Rybalko and N. A. Ugarova, Fiz. Met. i Metallov.,18, 921 (1964).Google Scholar
  4. 4.
    F. P. Rybalko, in: Studies of Heat-Resistant Alloys [in Russian], Vol. 10 (1963).Google Scholar
  5. 5.
    F. P. Rybalko and A. P. Vokhmyanin, in; Structure and Properties of Solids [in Russian], Vol. 2, No. 50, Sverdlovsk (1966).Google Scholar
  6. 6.
    F. P. Rybalko and L. M. Katanov, in: Structure and Properties of Solids [in Russian], Vol. 2, No. 50, Sverdlovsk (1966), p. 174.Google Scholar
  7. 7.
    F. P. Rybalko, R. I. Shevchenko, and Z. N. Lakeeva, in: Collected Scientific Works of the MINKh [in Russian], Vol. 3, Sverdlovsk (1967).Google Scholar
  8. 8.
    W. Boas and M. E. Hargreves, Proc. Roy. Soc. A,193, 89 (1948).Google Scholar
  9. 9.
    H. C. Chang and N. I. Grant, TAIMME,197, 1175 (1953).Google Scholar
  10. 10.
    E. N. da C. Andrade, Proc. Roy. Soc.,A84, 1 (1910).Google Scholar
  11. 11.
    A. J. Kennedy, Processes of Creep and Fatigue in Metals, John Wiley, New York (1963).Google Scholar
  12. 12.
    A. H. Sully, Metallic Creep and Creep-Resistant Alloys, Interscience, New York (1949).Google Scholar
  13. 13.
    A. K. Mitropol'skii, Statistical Methods [in Russian], Moscow (1961).Google Scholar
  14. 14.
    F. P. Rybalko, Fiz. Met. i Metallov.,10, 587 (1960).Google Scholar
  15. 15.
    W. A. Wood and H. I. Tapsell, Nature,159, 415 (1946).Google Scholar
  16. 16.
    C. Crussard, Metal Treatment,14, 149 (1947).Google Scholar
  17. 17.
    F. P. Rybalko, Fiz. Met. i Metallov.,1, 231 (1955).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • F. P. Rybalko
    • 1
  • G. V. Gusev
    • 1
  • E. A. Konovalova
    • 1
  1. 1.A. M. Gor'kii Ural State UniversityUSSR

Personalised recommendations