Catalysis Letters

, Volume 27, Issue 3–4, pp 369–375 | Cite as

Redox transformations of vanadium species at the rutile surface

  • Jerzy Haber
  • Paweł Nowak
Article

Abstract

Redox transformations of vanadium species, deposited on the surface of a rutile monocrystal by annealing rutile with V2O5 were investigated by cyclic voltammetry. Two different vanadium species were observed at the surface: first, present in the crystal lattice of rutile, which undergoes the redox transformation V4+/V3+ only, and the second, present at the surface, which undergoes both the V5+/V4+ and V4+/V3+ redox transformations. The latter appears only when the subsurface layer becomes saturated with the former.

Keywords

vanadium oxide/rutile catalyst monolayers of vanadium species redox transformations of vanadium species voltammetry of vanadium species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Machej, J. Haber, A.M. Turek and I.E. Wachs, Appl. Catal. A 70 (1991) 115.Google Scholar
  2. [2]
    G. Deo, A. Turek, I.E. Wachs, T. Machej, J. Haber, N. Das, H. Eckert and A.M. Hirt, Appl. Catal. 91 (1992) 27.Google Scholar
  3. [3]
    G.C. Bond, J.P. Zurita, S. Flamertz, P.J. Gellings, H. Bosch and J.G. van Ommen, Appl. Catal. 22 (1986) 361.Google Scholar
  4. [4]
    M. Gasior, I. Gasior and B. Grzybowska-Świerkosz, Appl. Catal. 10 (1984) 87.Google Scholar
  5. [5]
    G. Centi, E. Giamello and T. Trifiro, J. Catal. 130 (1991) 220.Google Scholar
  6. [6]
    M. Gasior and B. Grzybowska-Świerkosz, in:Vanadia Catalysts for Processes of Oxidation of Aromatic Hydrocarbons, eds. B. Grzybowska-Świerkosz and J. Haber (Polish Scientific Publishers, Krakow, 1984) p. 133.Google Scholar
  7. [7]
    A.M. Anthony and R. Colognes, in:Preparatory Methods in Solid State Chemistry, ed. P. Hagenmuller (Academic Press, New York, 1972) p. 157.Google Scholar
  8. [8]
    S.R. Morrison,Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum Press, New York, 1980).Google Scholar
  9. [9]
    P.P. Dennis and R. Freer, J. Mater. Sci. 28 (1993) 4804.Google Scholar
  10. [10]
    J. Haber, T. Machej and T. Czeppe, Surf. Sci. l51 (1985) 301.Google Scholar
  11. [11]
    M. Gasior, J. Haber and T. Machej, Appl. Catal. 33 (1987) 1.Google Scholar
  12. [12]
    Y. Israel and L. Merits, in:Standard Potentials in Aqueous Solutions, eds. A.J. Bard, R. Parsons and J. Jordan (Dekker, New York, 1985) ch. 17.Google Scholar
  13. [13]
    I. Filipovic, Z. Hahl, Z. Gasparac and V. Klemencic, J. Am. Chem. Soc. 76 (1954) 2074.Google Scholar
  14. [14]
    L.-P. Ducret, Ann. Chem. Ser. 126 (1951) 727.Google Scholar
  15. [15]
    J. Gautron, P. Lemasson, B. Poumellec and J.-F. Marucco, Solar Energy Mater. 9 (1983) 101.Google Scholar
  16. [16]
    G. Deo, A.M. Turek, I.E. Wachs, T. Machej, J. Haber, N. Das, H. Eckert and A.M. Hirt, Appl. Catal. A91 (1992) 27.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Jerzy Haber
    • 1
  • Paweł Nowak
    • 1
  1. 1.Institute of Catalysis and Surface ChemistryPolish Academy of SciencesKrakówPoland

Personalised recommendations