Advertisement

Catalysis Letters

, Volume 39, Issue 1–2, pp 5–17 | Cite as

Spatially (nanometer) controlled hydrogenation and oxidation of carbonaceous clusters by the platinum tip of a scanning tunneling microscope operating inside a reactor cell

  • B. J. McIntyre
  • M. Salmeron
  • G. A. Somorjai
Article

Abstract

Hydrocarbon clusters formed by the thermal decomposition of propylene on Pt(111) were rehydrogenated or oxidized with nanometer spatial resolution using the platinum tip of a scanning tunneling microscope (STM) at 300 K in atmospheric pressures of H2 or O2. The reaction rate shows a strong dependence on the oxygen or hydrogen pressures and on the tip-surface separation. The reaction stops when the Pt tip becomes contaminated with carbon, after the removal of ∼107–108 carbon atoms, but can be regenerated by removing material from the tip by application of a voltage pulse. Dissociative adsorption of H2 and O2 on the tip, followed by transfer of atoms to the surface is the proposed mechanism of these tip-catalyzed reactions.

Keywords

catalysis nanofabrication STM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.J. McIntyre, M. Salmeron and G.A. Somorjai, Rev. Sci. Instr. 64 (1993) 687.Google Scholar
  2. [2]
    B.J. McIntyre, M. Salmeron and G.A. Somorjai, Catal. Lett. 14 (1992) 263.Google Scholar
  3. [3]
    B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Vac. Sci. Technol. A 11 (1993) 1964.Google Scholar
  4. [4]
    B.J. McIntyre, M. Salmeron and G.A. Somorjai, J. Catal., submitted (1996).Google Scholar
  5. [5]
    B.J. McIntyre, M. Salmeron and G.A. Somorjai, Science 265 (1994) 1415.Google Scholar
  6. [6]
    U. Schröder, B.J. McIntyre, M. Salmeron and G.A. Somorjai, Surf. Sci. 331–333 (1995) 337.Google Scholar
  7. [7]
    D.M. Zeglinski, D.F. Ogletree, T.P. Beebe Jr., R.Q. Hwang, G.A. Somorjai and M.B. Salmeron, Rev. Sci. Intstr. 61 (1990) 3769.Google Scholar
  8. [8]
    M. Salmeron and G.A. Somorjai, J. Phys. Chem. 86 (1982) 341.Google Scholar
  9. [9]
    R.J. Koestner, J.C. Frost, P.C. Stair, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 116 (1982) 85.Google Scholar
  10. [10]
    R.J. Koestner, M.A. Van Hove and G.A. Somorjai, J. Phys. Chem. 87 (1983) 203.Google Scholar
  11. [11]
    K.M. Ogle, J.R. Creighton, S. Akhter and J.M. White, Surf. Sci. 169 (1986), 246.Google Scholar
  12. [12]
    N.R. Avery and N. Sheppard, Proc. Roy. Soc. Ser. A 405 (1986) 1.Google Scholar
  13. [13]
    T.A. Land, T. Michely, R.J. Behma, J.C. Hemminger and G. Comsa, J. Chem. Phys. 97 (1992) 6774.Google Scholar
  14. [14]
    J.M. Thomas and W.J. Thomas,Introduction to the Principles of heterogeneous Catalysis (Academic Press, London, 1967).Google Scholar
  15. [15]
    F. Zaera and G.A. Somorjai, J. Am. Chem. Soc. 106 (1984) 2288.Google Scholar
  16. [16]
    J.H. Sinfelt, Catal. Lett. 9 (1991) 159.Google Scholar
  17. [17]
    M. Salmeron, D.F. Ogletree, C. Ocal, H.-C. Wang, G. Neubauer, W. Kolbe and G. Meyers, J. Vac. Sci. Technol. B 9 (1991) 1347.Google Scholar
  18. [18]
    T.A. Jung, A. Moser, H.J. Hug, D. Brobeck, R. Hofer, H.R. Hidber and U.D. Schwarz, Ultramicroscopy 42–44 (1992) 1446, and references therein.Google Scholar
  19. [19]
    H. Kuramochi, H. Uchida and M. Aono, Phys. Rev. Lett. 72 (1994) 932.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • B. J. McIntyre
    • 1
  • M. Salmeron
    • 1
  • G. A. Somorjai
    • 1
  1. 1.Materials Sciences Division, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations