, Volume 36, Issue 2–3, pp 275–280 | Cite as

Assessment of loess as parent material for agroecological potential

  • Lóczy Dénes 
  • Szalai László 


Due to its physical and chemical properties, areas with a loess mantle of proper thickness favour arable farming. Loess as a parent material promotes the formation of soils of good structure, nutrient supply and water budget. The ongoing land evaluation project places particular emphasis on the consideration of parent material in its scoring system as soil and climatic parameters are assessed in conjunction with the grain size composition of subsurface material and soil texture.

A test area most suitable for the presentation of the method seems to be a sandy alluvial fan with loess mantle and this circumstance allows the contrasting of the agroecological potentials of soils developed on the two parent materials of different nature.

The favourable water storage properties of loess make this deposit particularly valuable under the conditions of climatic aridification. The geographical information system applied here is capable of simulating the agroecological potential changes caused by reduced precipitation, increased evaporation and dropping groundwater levels.


Geographical Information System Groundwater Level Parent Material Water Budget Climatic Aridification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balogh, K.: Szedimentológia II. (Sedimentology). Akadémiai Kiadó, Budapest 1991. (in Hungarian)Google Scholar
  2. Borsy, Z.: Loess, sandy loess and loess sand blankets in Hungarian wind-blown sand regions. Földrajzi Közlemények 21, 1–2, 172–184 (1973)Google Scholar
  3. Borsy, Z.: Evolution of the alluvial fan of the Alföld. pp. 229–248. In: Rachocki, A. H. and Church, M. (eds.), Alluvial Fans: A Field Approach. John Wiley and Sons, Chichester 1990.Google Scholar
  4. De Ploey, J.: A soil-mechanical approach of the erodibility of loess by solifluxion. Revue Géomorphologie dynamique 22(2), 61–70 (1973)Google Scholar
  5. Fedoroff, N.: The Production Potential of Soils: Part I — Sensitivity of Principal Soil Types to the Intensive Agriculture of North-Western Europe. pp. 65–85. In: Barth, H. and L'Hermite, P.: Scientific Basis for Soil Protection in the European Community. Elsevier, Amsterdam 1987.Google Scholar
  6. Fränzle, O.; Kuhnt, D.; Kuhnt, G.: Die ökosystemare Erfassung von Bodenparametern zur Vorhersage der potentiellen Schadwirkung von Umweltchemikalien. Verhandlungen der Gesellschaft für Ökologie XIII, 323–340 (1985)Google Scholar
  7. Kézdi, A.: Soil physics. Akadémiai Kiadó, Budapest 1979.Google Scholar
  8. Kis, É.: Granulometric Investigations of Loess Profiles in Hungary. GeoJournal 36.2/3, 151–156 (1995) (in this volume)Google Scholar
  9. Lóczy, D.; Szalai, L.: GIS application for land capability survey in Hungary. Geografski zbornik, Ljubljana 33, 53–64 (1993)Google Scholar
  10. Major, P.; Neppel, F.: Dropping groundwater levels on the Danube-Tisza Interfluve. Vízügyi Közlemények, Budapest LXX, 4, 605–626 (1988) (in Hungarian)Google Scholar
  11. McRae, S. G.; Burnham, C. P.: Land evaluation. Clarendon Press, Oxford 1981.Google Scholar
  12. Pálfai, I.: Water deficit on the Danube-Tisza Interfluve. Hidrológiai Tájékoztató Budapest 125–131 (1993) (in Hungarian)Google Scholar
  13. Pécsi, M.: Distribution and Chronological Problems of Loess. GeoJournal 24, 2, 139–141 (1991)Google Scholar
  14. Pécsi, M.: Quaternary and loess research. Akadémiai Kiadó, Budapest (375 p. + map) 1993. (in Hungarian with English summary)Google Scholar
  15. Pécsi, M.; Zentay, T.; Gerei, L.; Reményi, M.: Relationship of the geomorphological position, genetic, physical, chemical and mineralogical features of sand soils with their fertility. pp. 290–303. In: Pécsi, M. (ed.), Lithology and Stratigraphy of Loess and Paleosols. Geographical Research Institute Hungarian Academy of Sciences, Budapest, 1984.Google Scholar
  16. Richter, G.: Soil erosion mapping in Germany and in Czechoslovakia. pp. 29–54 In: De Boodt, M.; Gabriels, D. (eds.), Assessment of Erosion. John Wiley, Chichester 1980.Google Scholar
  17. Smit, B.; Bray, J.; Keddie, Ph.: Identification of Marginal Agricultural Areas in Ontario, Canada. Geoforum 22, 3, 333–346 (1991)Google Scholar
  18. Smit, B.; Ludlow, L.; Johnston, T.; Flaherty, M.: Identifying important agricultural lands: A critique. The Canadian Geographer 31, 4, 356–365 (1987)Google Scholar
  19. Stefanovits, P.: Soils in Hungary. Akadémiai Kiadó, Budapest 1963. (in Hungarian)Google Scholar
  20. Stefanovits, P.: Soil Science. 3rd, revised edition. Mezögazda Kiadó, Budapest 1992. (in Hungarian)Google Scholar
  21. Szalóki, S.: Impacts of dropping groundwater levels on crop cultivation. pp. 53–58. In: Pálfai, I. (ed.), Water management problems on the Danube-Tisza Interfluve. Békéscsaba (Nagyalföld Foundation Papers 3) 1994. (in Hungarian)Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Lóczy Dénes 
    • 1
  • Szalai László 
    • 1
  1. 1.Geographical Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations