Monatshefte für Chemie / Chemical Monthly

, Volume 126, Issue 2, pp 211–218 | Cite as

Inverse-electron-demanddiels-alder reactions of condensed pyridazines VI: Ring transformations of pyrido[2,3-d]pyridazine intog-fused quinolines

  • N. Haider
  • W. Staschek
Organische Chemie Und Biochemie

Summary

A series ofg-annelated quinolines was synthesized, employing pyrido[2,3-d]pyridazine as an azadiene in inverse-electron-demandDiels-Alder reactions with electron-rich dienophiles (enamines and a ketene-N,S-acetal). In cases where isomer mixtures were obtained, NOE difference spectroscopy was used for structural assignment.

Keywords

Pyrido[2,3-d]pyridazine g-Annelated quinolines Inverse-electron-demandDiels-Alder reactions [4 + 2] Cycloaddition reactions 

Diels-Alder-Reaktionen mit inversem Elektronenbedarf an kondensierten Pyridazinen, 6. Mitt.: Ringtransformationen von Pyrido[2,3-d]pyridazin ing-anellierte Chinoline

Zusammenfassung

Die Darstellung einer Reiheg-anellierter Chinoline wird beschrieben. Dabei wurde Pyrido[2,3-d]pyridazin als Azadien inDiels-Alder-Reaktionen mit inversem Elektronenbedarf unter Verwendung elektronenreicher Dienophile (Enamine und ein Keten-N,S-Acetal) eingesetzt. In jenen Fällen, wo Isomerengemische erhalten wurden, erfolgte die jeweilige Strukturzuordnung mittels NOE-Differenzspektroskopie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Part V: Haider N., Wanko R. (1974) Heterocycles38: 1805Google Scholar
  2. [2]
    Presented in part at the4 th Blue Danube Symposium on Heterocyclic Chemistry, St. Pölten, Austria, June 1994Google Scholar
  3. [3]
    Taken in part from: Staschek W. (1995) Thesis, University of ViennaGoogle Scholar
  4. [4]
    For reviews cf. a) Boger D. L. (1983) Tetrahedron39: 2869;Google Scholar
  5. [4] b)
    Boger D. L. (1986) Chem. Rev.86: 781;Google Scholar
  6. [4] c)
    Boger D. L., Weinreb S. M. (1987) Hetero Diels-Alder Methodology in Organic Synthesis, Academic Press, New York;Google Scholar
  7. [4] d)
    Boger D. L., Patel M. (1989) Recent Applications of the Inverse Electron Demand Diels-Alder Reaction. In: Suschitzky H., Scriven E. F. V. (eds.) Progress in Heterocyclic Chemistry, Vol. 1. Pergamon Press, Oxford, p. 30Google Scholar
  8. [5]
    Oishi E., Yamada A., Hayashi E., Higashino T. (1987) Chem. Pharm. Bull.35: 2686Google Scholar
  9. [6]
    Oishi E., Yamada A., Hayashi E., Tanji K., Miyashita A., Higashino T. (1989) Chem. Pharm. Bull.37: 13Google Scholar
  10. [7]
    Haider N. (1991) Tetrahedron47: 3959Google Scholar
  11. [8]
    Haider N. (1992) Tetrahedron48: 7173Google Scholar
  12. [9]
    Haider N., Loll C. (1994) J. Heterocyclic Chem.31: 357Google Scholar
  13. [10]
    Haider N., Mereiter K., Wanko R. (1994) Heterocycles38: 1845Google Scholar
  14. [11]
    Gruseck U., Heuschmann M. (1987) Tetrahedron Lett.: 6027Google Scholar
  15. [12]
    Oishi E., Taido N., Iwamoto K., Miyashita A., Higashino T. (1990) Chem. Pharm. Bull.38: 3268Google Scholar
  16. [13]
    Paul D. B., Rodda H. J. (1968) Aust. J. Chem.21: 1291Google Scholar
  17. [14]
    Semiempirical MO calculations were carried out using the AM1 method [15] as implemented in the AMPAC software package [16].Google Scholar
  18. [15]
    Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. J. P. (1985) J. Am. Chem. Soc.107: 3902Google Scholar
  19. [16]
    AMPAC 4.5, © 1993 Semichem, 12715 W. 66th Terrace, Shawnee, KS 66216, USAGoogle Scholar
  20. [17]
    Lindner J., Sellner J., Hofmann E., Hager J. (1939) Monatsh. Chem.72: 335Google Scholar
  21. [18]
    Kuehne M. E. (1959) J. Am. Chem. Soc.81: 5400Google Scholar
  22. [19]
    v. Braun J., Gruber H. (1922) Ber. Dtsch. Chem. Ges.55: 1710Google Scholar
  23. [20]
    Hutchins R. O., Su W.-Y., Sivakumar R., Cistone F., Stercho Y. P. (1983) J. Org. Chem.48: 3412Google Scholar
  24. [21]
    1H-NMR signals of4a which are not overlapped by the corresponding signals of the isomer3a (300 MHz, CDCl3): δ=7.90 (s, 1 H, H-9), 7.48 (s, 1 H, H-5)Google Scholar
  25. [22]
    Only the signal of H-10 in the1H-NMR spectrum of compound4b is not overlapped by the corresponding signal of the isomer3b (80 MHz, CDCl3): δ=7.80 (s, 1 H, H-10)Google Scholar
  26. [23]
    Stork G., Brizzolara A., Landesman H., Szmuszkovicz J., Terrell R. (1963) J. Am. Chem. Soc.85: 207Google Scholar
  27. [24]
    Gompper R., Elser W. (1969) Liebigs Ann. Chem.725: 64Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • N. Haider
    • 1
  • W. Staschek
    • 1
  1. 1.Institute of Pharmaceutical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations