Skip to main content
Log in

Kinetic analysis of excitation-contraction coupling

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Recent studies of isolated muscle membrane have enabled induction and monitoring of rapid Ca2+ release from sarcoplasmic reticulum (SR)5 in vitro by a variety of methods. On the other hand, various proteins that may be directly or indirectly involved in the Ca2+ release mechanism have begun to be unveiled. In this mini-review, we attempt to deduce the molecular mechanism by which Ca2+ release is induced, regulated, and performed, by combining the updated information of the Ca2+ release kinetics with the accumulated knowledge about the key molecular components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, B.-M. B., Oikawa, K., Reithmeier, R. A. F., and Sykes, B. D. (1984).J. Biol. Chem. 259, 11,876–11,881.

    Google Scholar 

  • Abramson, J. J., Trimm, J. L., Weden, L., and Salama, G. (1983).Proc. Natl. Acad. Sci. USA 80, 1526–1530.

    Google Scholar 

  • Abramson, J. J., Cronin, J. R., and Salama, G. (1988).Arch. Biochem. Biophys. 263, 245–255.

    Google Scholar 

  • Antoniu, B., Kim, D. H., Morii, M., and Ikemoto, N. (1985).Biochim. Biophys. Acta 816, 9–17.

    Google Scholar 

  • Beeler, T., and Gable, K., (1985).Biochim. Biophys. Acta 821, 142–152.

    Google Scholar 

  • Campbell, K. P., and MacLennan, D. H. (1982).J. Biol. Chem. 257, 1238–1246.

    Google Scholar 

  • Caswell, A. H., Lau, Y. H., Garcia, M., and Brunshwig, J.-P. (1979).J. Biol. Chem. 254, 202–208.

    Google Scholar 

  • Chadwick, C. C., Inui, M., and Fleischer, S. (1988).J. Biol. Chem. 263, 10,872–10,877.

    Google Scholar 

  • Chandler, W. K., Pakowsky, R. F., and Schneider, M. F. (1976).J. Physiol (London.) 254, 285–316.

    Google Scholar 

  • Chiesi, M., and Wen, Y. S. (1983).J. Biol. Chem. 258, 6078–6085.

    Google Scholar 

  • Cifuentes, M. E., Hidalgo, C., and Ikemoto, N. (1987).Biophys. J. 51, 351a.

    Google Scholar 

  • Cifuentes, M. E., Ronjat, M., and Ikemoto, N. (1988).Biophys. J. 53, 131a.

    Google Scholar 

  • Costello, B., Chadwick, C., Saito, A., Chu, A., Maurer, A., and Fleischer, S. (1986).J. Biol. Chem. 103, 741–753.

    Google Scholar 

  • Danko, S., Kim, D. H., Sreter, F. A., and Ikemoto, N. (1985).Biochim. Biophys. Acta 816, 18–24.

    Google Scholar 

  • Donaldson, S. K. B. (1985).J. Gen. Physiol. 86, 501–525.

    Google Scholar 

  • Donaldson, S. K., Goldblerg, N. D., Walseth, T. F., and Huetteman, D. A. (1987).Biochim. Biophys. Acta 927, 92–99.

    Google Scholar 

  • Endo, M. (1977).Physiol. Rev. 57, 71–108.

    Google Scholar 

  • Fabiato, A. (1982).Can. J. Physiol. Pharmacol. 60, 556–567.

    Google Scholar 

  • Fabiato, A. (1985a).J. Gen. Physiol. 85, 189–246.

    Google Scholar 

  • Fabiato, A. (1985b).J. Gen. Physiol. 85, 247–289.

    Google Scholar 

  • Fabiato, A. (1985c).J. Gen. Physiol. 85, 291–320.

    Google Scholar 

  • Ferguson, D. G., Schwartz, H. W., and Franzini-Armstrong, C. (1984).J. Cell Biol. 99, 1735–1742.

    Google Scholar 

  • Fleischer, S., Olgunbunmi, E. A., Dixon, M. C., and Fleer, E. A. M. (1985).Proc. Natl. Acad. Sci. USA 82, 7256–7259.

    Google Scholar 

  • Fliegel, L., Ohnishi, M., Carpenter, M. R., Khanna, V. K., Reithmeier, R. A. F., and MacLennan, D. H. (1987).Proc. Natl. Acad. Sci. USA 84, 1167–1171.

    Google Scholar 

  • Franzini-Armstrong, C., Kenney, L. J., and Varriano-Marston, E. (1987).J. Cell Biol. 105, 49–56.

    Google Scholar 

  • Hidalgo, C., and Jaimovich, E. (1989).J. Bioenerg. Biomembr. 21, 267–282.

    Google Scholar 

  • Hymel, L., Inui, M., Fleischer, S., and Schindler, H. G. (1988).Proc. Natl. Acad. Sci. USA 85, 441–445.

    Google Scholar 

  • Ikemoto, N., Nagy, B., Bhatnagar, G. M., and Gergely, J. (1974).J. Biol. Chem. 249, 2357–2365.

    Google Scholar 

  • Ikemoto, N., Antoniu, B., and Kim, D. H. (1984).J. Biol. Chem. 259, 13,151–13,158.

    Google Scholar 

  • Ikemoto, N., Antoniu, B., and Mészáros, L. G. (1985).J. Biol. Chem. 268, 14,096–14,100.

    Google Scholar 

  • Ikemoto, N., and Koshita, M. (1988).Biophys. J. 53, 42a.

  • Ikemoto, N., Ronjat, M., and Mészáros, L. G. (1989).Biophys. J. 55, 14a.

    Google Scholar 

  • Imagawa, T., Smith, J. S., Coronado, R., and Campbell, K. P. (1987).J. Biol. Chem. 262, 16,636–16,643.

    Google Scholar 

  • Inesi, G., and Malan, N. (1976).Life Sci. 18, 773–780.

    Google Scholar 

  • Kasai, M., and Miyamoto, H. (1976a)J. Biochem. 79, 1053–1066.

    Google Scholar 

  • Kasai, M., and Miyamoto, H. (1976b).J. Biochem. 79, 1067–1076.

    Google Scholar 

  • Katz, A. M., Repke, D. I., and Hasselbach, W. (1977a).J. Biol. Chem. 252, 1938–1949.

    Google Scholar 

  • Katz, A. M., Repke, D. I., Dunnett, J., and Hasselbach, W. (1977b).J. Biol. Chem. 252, 1950–1956.

    Google Scholar 

  • Katz, A. M., Repke, D. I., Fudyma, G., and Shigekawa, M. (1977c).J. Biol. Chem. 252, 4210–4214.

    Google Scholar 

  • Katz, A. M., Louis, C. F., Repke, D. I., Fudyma, G., Nash-Adler, P. A., Kapsaw, R., and Shigekawa, M. (1980).Biochim. Biophys. Acta 596, 94–107.

    Google Scholar 

  • Kawamoto, R. M., Brunschwig, J.-P., Kim, K. C., and Caswell, A. H. (1986).J. Cell Biol. 103, 1405–1414.

    Google Scholar 

  • Kim, D. H., and Ikemoto, N. (1986).J. Biol. Chem. 261, 11,674–11,679.

    Google Scholar 

  • Kim, D. H., Ohnishi, S. T., and Ikemoto, N. (1983).J. Biol. Chem. 258, 9662–9668.

    Google Scholar 

  • Kirino, Y., Osakabe, M., and Shimizu, H. (1983).J. Biochem. 94, 1111–1118.

    Google Scholar 

  • Kometani, T., and Kasai, M. (1978).J. Membr. Biol. 41, 295–308.

    Google Scholar 

  • Kurebayashi, N., and Ogawa, Y. (1984).J. Biochem. 96, 1249–1255.

    Google Scholar 

  • Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y., and Meissner, G. (1988).Nature 331, 315–319.

    Google Scholar 

  • Lai, F. A., and Meissner, G. (1989).J. Bioenerg. Biomembr. 21, 227–246.

    Google Scholar 

  • Lattanzio, F. A., Jr., Schlattere, R. C., Nicar, M., Campbell, K. P., and Sutko, J. L. (1987).J. Biol. Chem. 262, 2711–2718.

    Google Scholar 

  • Martonosi, A. N. (1984).Physiol. Rev. 64, 1240–1320.

    Google Scholar 

  • Meissner, G. (1984).J. Biol. Chem. 259, 2365–2374.

    Google Scholar 

  • Meissner, G. (1986).Biochemistry 25, 244–251.

    Google Scholar 

  • Meissner, G. (1988).Nature 331, 315–319.

    Google Scholar 

  • Meissner, G., and Henderson, J. S. (1987).J. Biol. Chem. 262, 3065–3073.

    Google Scholar 

  • Meissner, G., and McKinley, D. (1976).J. Membr. Biol. 30, 79–98.

    Google Scholar 

  • Meissner, G., Darling, E., and Eveleth, J. (1986).Biochemistry 25, 236–244.

    Google Scholar 

  • Mészáros, L. G., and Ikemoto, N. (1985a).J. Biol. Chem. 260, 16,076–16,079.

    Google Scholar 

  • Mészáros, L. G., and Ikemoto, N. (1985b).Biochem. Biophys. Res. Commun. 1127, 836–842.

    Google Scholar 

  • Mészáros, L. G., Brown, K. L., and Ikemoto, N. (1987).J. Biol. Chem. 262, 11,553–11,558.

    Google Scholar 

  • Mészáros, L. G., and Ikemoto, N. (1987)Biophys. J. 51, 400a.

    Google Scholar 

  • Mitchell, R. D., Simmerman, H. K. B., and Jones, L. (1988).J. Biol. Chem. 263, 1376–1381.

    Google Scholar 

  • Mobley, B. A. (1979).J. Membr. Biol. 46, 315–329.

    Google Scholar 

  • Morii, H., Takisawa, H., and Yamamoto, T. (1985).J. biol. Chem. 260, 11,536–11,541.

    Google Scholar 

  • Morii, M., Danko, S., Kim, D. H., and Ikemoto, N. (1986).J. Biol. Chem. 261, 2343–2348.

    Google Scholar 

  • Moutin, M.-J., and Dupont, Y. (1988).J. Biol. Chem. 263, 4228–4235.

    Google Scholar 

  • Nagasaki, K., and Kasai, M. (1983).J. Biochem. 94, 1101–1109.

    Google Scholar 

  • Nagura, S., Kawasaki, T., Taguchi, T., and Kasai, M. (1988).J. Biochem. 104, 461–465.

    Google Scholar 

  • Nakamura, Y., Kobayashi, J., Gilmore, J., Mascal, M., Rinehart, K. L., Jr., Nakamura, H., and Ohizumi, Y. (1986).261, 4139–4142.

  • Ogawa, Y., and Kurebayashi, N. (1982).J. Biochem. 92, 899–905.

    Google Scholar 

  • Ohnishi, S. T. (1979).J. Biochem. 86, 1147–1150.

    Google Scholar 

  • Ohnishi, S. T. (1987).Biochim. Biophys. Acta 897, 261–268.

    Google Scholar 

  • Ostwald, T. J., and MacLennan, D. H. (1974).J. Biol. Chem. 249, 974–979.

    Google Scholar 

  • Palade, P. (1987).J. Biol. Chem. 262, 6142–6148.

    Google Scholar 

  • Palade, P., Mitchell, R. D., and Fleischer, S. (1983).J. Biol. Chem. 218, 8098–8107.

    Google Scholar 

  • Rios, E., and Brum, G. (1987).Nature 325, 717–720.

    Google Scholar 

  • Ronjat, M., and Ikemoto, N. (1989).Biophys. J. 55, 13a.

  • Rosemblatt, M. S., Cifuentes, M. E., and Ikemoto, N. (1988).Biophys. J. 53, 131a.

    Google Scholar 

  • Rousseau, E., LaDine, J., Lin, Q.-Y., and Meissner, G. (1988).Arch. Biochem. Biophys. 267, 75–86.

    Google Scholar 

  • Salama, G., and Abramson, J. (1984).J. Biol. Chem. 259, 13,363–13,369.

    Google Scholar 

  • Schneider, M. F., and Chandler, W. K. (1973).Nature 242, 244–246.

    Google Scholar 

  • Seiler, S., Wegener, A. D., Whang, D. D., Hathaway, D. R., and Jones, L. R. (1984).J. Biol. Chem. 259, 8550–8557.

    Google Scholar 

  • Shoshan, V., MacLennan, D. H., and Wood, D. S. (1981).Proc. Natl. Acad. Sci. USA 78, 4828–4832.

    Google Scholar 

  • Shoshan-Barmatz, V. (1986).Biochem. J. 240, 509–517.

    Google Scholar 

  • Smith, J. S., Coronado, R., and Meissner, G. (1985).Nature 316, 446–449.

    Google Scholar 

  • Stephenson, E. W. (1985).J. Gen. Physiol. 86, 813–832.

    Google Scholar 

  • Suarez-Isla, B. A., Orozco, C., Heller, P. F., and Froehlich, J. P. (1986).Proc. Natl. Acad. Sci. USA 83, 7741–7745.

    Google Scholar 

  • Suko, J. (1988).Biochim. Biophys. Acta 938, 79–88.

    Google Scholar 

  • Sumbillar, C., and Inesi, G. (1987).FEBS Lett. 210, 31–36.

    Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kanagawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S. (1987).Nature 328, 313–318.

    Google Scholar 

  • Vergara, J., Tsien, R. Y., and Delay, M. (1985).Proc. Natl. Acad. Sci. USA 82, 6352–6356.

    Google Scholar 

  • Volpe, P., and Stephenson, E. W. (1986).J. Gen. Physiol. 87, 271–288.

    Google Scholar 

  • Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T. (1985).Nature 316, 347–349.

    Google Scholar 

  • Zorzato, F., and Volpe, P. (1988).Biophys. J. 53, 419a.

  • Zorzato, F., Salviati, G., Facchinett, T., and Volpe, P. (1985).J. Biol. Chem. 260, 7349–7355.

    Google Scholar 

  • Zorzato, F., Margreth, A., and Volpe, P. (1986).J. Biol. Chem. 261, 13,252–13,257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations used: AMP-PCP, adenosine 5′-(β, γ-methylenetriphosphate); C1/2, concentration a half-maximal activation or inhibition; Con-A, concanavalin A; DACM,N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide; DCCD, dicyclohexylcarbodiimide; SR, sarcoplasmic reticulum; DHP, dihydropyridine; E-C, excitation-contraction; EP, phosphorylated intermediate of the enzyme; IP3, inositol 1,4,5-trisphosphate; JFM, junctional face membrane;M r, molecular weight; T-tubule, transverse-tubular system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikemoto, N., Ronjat, M. & Mészáros, L.G. Kinetic analysis of excitation-contraction coupling. J Bioenerg Biomembr 21, 247–266 (1989). https://doi.org/10.1007/BF00812071

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00812071

Key Words

Navigation