Skip to main content
Log in

Prediction of free excess enthalpy and excess enthalpy of nonelectrolyte mixtures with the modified TASQUAC model

Vorhersage von freier Exzessenthalpie und Exzessenthalpie von Nichtelektrolytmischungen mit Hilfe des modifizierten TASQUAC-Modells

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

Using the known models for liquid mixtures (NRTL, UNIQUAC,...), the excess free enthalpy and the heats of mixing cannot be calculated simultaneously in good agreement with experimental data using only two parameters (or three for NRTL) per temperature and binary system. The excess enthalpy can be estimated only qualitatively but not quantitatively. There is also much doubt about the sign of the predictedH E data if the absolute value ofH E is small [1]. In this work, we examined the possibilities of modified TASQUAC in simultaneous prediction ofVLE andH E data and the thermodynamic consistency of experimental data.

Zusammenfassung

Mit Hilfe der bekannten Modelle für flüssige Mischungen (NRTL, UNIQUAC,...) können die freie Exzeßenthalpie und die Mischungswärme nicht gleichzeitig in guter Übereinstimmung mit experimentellen Daten berechnet werden. Die Exzeßenthalpie kann, ausgehend von Parametern, die ausVLE-Daten erhalten wurden, nur qualitativ, nicht quantitativ beschrieben werden. Weiterhin ist das berechnete Vorzeichen der Mischungswärme bei betraglich kleinen Werten der Exzeßenthalpie unsicher [1]. In dieser Arbeit werden die Möglichkeiten des modifizierten TASQUAC-Modells zur simultanen Beschreibung vonVLE- undH E-Daten untersucht sowie die thermodynamische Konsistenz der verwendeten Daten überprüft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fredenslund A., Gmehling J., Rasmussen P. (1977) Vapour-liquid equilibria using UNIFAC. Elsevier, Amsterdam

    Google Scholar 

  2. Mickeleit M., Lacmann R. (1983) Fluid Phase Equil.12: 201

    Google Scholar 

  3. Kuhlmann O., Lacmann R., Mickeleit M. (1986) Fluid Phase Equil.27: 437

    Google Scholar 

  4. Brennecke D., Lacmann R. (1988) Fluid Phase Equil.43: 57

    Google Scholar 

  5. Brennecke D. (1989) Thesis, Braunschweig

  6. Brennecke D., Schäfer B., Lacmann R. (1992) Fluid Phase Equil.73: 57

    Google Scholar 

  7. Kehiaian H. V., Grolier J. P., Benson G. C. (1978) J. Chim. Phys. No. 1112: 44

    Google Scholar 

  8. Paul H.-J., Krug J., Knapp H., Gutsche B. (1986) J. Eng. Chem. Data31: 448

    Google Scholar 

  9. Paul H.-J., Krug J., Knapp H. (1988) Fluid Phase Equil.39: 307

    Google Scholar 

  10. Cheesman G. H., Whitaker A. M. B. (1952) Proc. Roy. Soc. LondonA212: 406

    Google Scholar 

  11. Hirobe H. (1926) J. Fac. Sci., Imp. Univ. Tokyo1: 155

    Google Scholar 

  12. McGlashan M. L., Pure J. E., Sainsbury I. E. J. (1954) Trans. Faraday Soc.50: 1284

    Google Scholar 

  13. Rulewicz G., Schuberth H., Leibnitz E. (1968) J. Prakt. Chem.37: 122

    Google Scholar 

  14. Krauze R., Serwinski M. (1973) system. Zesz. Nauk. Politech. Lodz., Chem. Spozyw.24: 53

    Google Scholar 

  15. Adcock D. S., McGlashan M. L. (1954) Proc. Royal Soc. LondonA226: 266

    Google Scholar 

  16. Ewing M. B., Marsh K. N. (1970) J. Chem. Thermodyn.2: 351

    Google Scholar 

  17. Harsted B. S., Thomsen E. S. (1974) J. Chem. Thermodyn.6: 549

    Google Scholar 

  18. Kehlen H., Sackmann H. (1966) Z. Phys. Chem. (Frankfurt am Main)50: 135

    Google Scholar 

  19. Arora P. S., Phutela R. C., Singh P. P. (1974) Thermochim. Acta10: 47

    Google Scholar 

  20. Goates J. R., Sullivan R. J., Ott J. B. (1959) J. Phys. Chem.63: 589

    Google Scholar 

  21. Heintz A., Lichtenthaler R. N. (1980) Ber. Bunsenges. Phys. Chem.84: 727

    Google Scholar 

  22. Bhattacharya S. N., Das S. K. (1959) Indian J. Phys.33: 46

    Google Scholar 

  23. Dvorak K., Boublik T. (1963) Collect. Czech. Chem. Commun.28: 1249

    Google Scholar 

  24. Scatchard G., Wood S. E., Mochel J. M. (1939) J. Am. Chem. Soc.61: 3206

    Google Scholar 

  25. Brown I., Ewald A. H. (1950) Austr. J. Sci. Res.A3: 306

    Google Scholar 

  26. Rodger A. J., Hsu C. C., Furter W. F. (1969) J. Chem. Eng. Data14: 362

    Google Scholar 

  27. Ocon Garcia J., Tojo Barreiro G., Espada L. (1969) An. Quim.65: 633

    Google Scholar 

  28. Yuan K. S., Lu B. C. Y., Ho J. C. K., Keshpande A. K. (1963) J. Chem. Eng. Data8: 549

    Google Scholar 

  29. Wang J. L. H., Boubilkova L., Lu B. C. Y. (1970) J. Appl. Chem.20: 172

    Google Scholar 

  30. Eliott K., Wormald C. J. (1976) J. Chem. Thermodyn.8: 881

    Google Scholar 

  31. Grosse-Wortmann H., Jost W., Wagner H. G. G. (1966) Z. Phys. Chem. (Frankfurt am Main)49: 74

    Google Scholar 

  32. Brown C. P., Mathieson A. R., Thynne J. C. J. (1955) J. Chem. Soc. (London) 4141

  33. Gracia M. (1977) J. Chem. Thermodyn.9: 55

    Google Scholar 

  34. Grolier J. P. E. (1976) Thermochim. Acta16: 27

    Google Scholar 

  35. Hill R. J., Swinton F. L. (1980) J. Chim. Thermodyn.12: 489

    Google Scholar 

  36. Hsu K.-Y., Clever H. L. (1975) J. Chem. Thermodyn.7: 435

    Google Scholar 

  37. Lundberg G. W. (1964) J. Chem. Eng. Data9: 193

    Google Scholar 

  38. Marsh K. N. (1973) Int. Data Series, Sel. Data Mixtures Ser. A. 23

  39. Abello L. (1973) J. Chim. Phys.-Phys. Chim. Biol.70: 1355

    Google Scholar 

  40. Cabani S., Ceccanti N. (1973) J. Chem. Thermodyn.5: 9

    Google Scholar 

  41. Coca Prados J. (1957–1968) Pub. 1969. Acta Salmanticensia, Cienc.33: 7

  42. Coomber B. A., Wormald C. J. (1976) J. Chem. Thermodyn.8: 793

    Google Scholar 

  43. Diaz Pena M., Fernandez Martin F. (1963) An. Real. Soc. Espan. de Fis. y. Quim.B59: 323

    Google Scholar 

  44. Karvo M. (1980) J. Chem. Thermodyn.12: 635

    Google Scholar 

  45. Murakami T., Murakami S., Fujishiro R. (1969) Bull. Chem. Soc. Jpn.42: 35

    Google Scholar 

  46. Paz-Andrade M. I., Ocon J., Casanova J. (1965) An Real. Soc. Espan. de Fis. y Quim.61: 707

    Google Scholar 

  47. Ratnam A. V., Rao C. V., Murti P. S. (1962) Chem. Eng. Sci.17: 392

    Google Scholar 

  48. Sabinin V. E., Belousov V. P., Morachevsky A. G. (1966) Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol.9: 382

    Google Scholar 

  49. Savini C. G., Winterhalter D. R., Kovach L. H., van Ness H. C. (1966) J. Chem. Eng. Data11: 40

    Google Scholar 

  50. Vesely F., Hynek V., Svoboda V., Holub R. (1974) Collect. Czech. Chem. Commun.39: 355

    Google Scholar 

  51. Nicholson D. E. (1961) J. Chem. Eng. Data.6: 5

    Google Scholar 

  52. Aim K. (1978) Fluid Phase Equil.2: 119

    Google Scholar 

  53. Boublik T. (1963) Collect. Czech. Chem. Commun.28: 1771.

    Google Scholar 

  54. Mentzer R. A., Greenkorn R. A., Chao K. C. (1982) J. Chem. Thermodyn.14: 817

    Google Scholar 

  55. Tasic A., Djordjevic B., Groczdanic D., Afgan N., Malic D. (1978) Chem. Eng. Sci.33: 189

    Google Scholar 

  56. Friend J., Scheller W. A., Weber J. H. (1970) Ind. Eng. Chem. Proc. Des. Dev.9: 144

    Google Scholar 

  57. Inoue M., Azumi K., Suzuki N. (1975) Ind. Eng. Chem. Fundam.14: 312

    Google Scholar 

  58. Young K. L., Mentzer R. A., Greenkorn R. A., Chao K. C. (1977) J. Chem. Thermodyn.9: 979

    Google Scholar 

  59. Osborne C. G., Morcom K. W. (1981) J. Chem. Thermodyn.13: 235

    Google Scholar 

  60. Kimura T., Takagi S. (1978) Netsu Sokutei5: 95

    Google Scholar 

  61. Madhavan S., Murti P. S. (1966) Chem. Eng. Sci.21: 465

    Google Scholar 

  62. Susarev M. P., Chen S. T. (1963) Zh. Fiz. Khim.37: 1739

    Google Scholar 

  63. Susarev M. P., Martynova N. S., Efimova G. A. (1977) Zh. Prikl. Khim.50: 1823

    Google Scholar 

  64. Diaz Pena M., Rodriguez Cheda D. (1970) An. Quim.66: 721

    Google Scholar 

  65. Sieg L. (1950) Chem. Ing. Tech.22: 322

    Google Scholar 

  66. Donald M. B., Ridgway K. (1958) J. Appl. Chem.8: 403

    Google Scholar 

  67. Chao K. C. (1956) Thesis, Wisconsin

  68. Butler P. A., Ridgway K. (1967) J. Appl. Chem.17: 191

    Google Scholar 

  69. Nagata I. (1962) J. Chem. Eng. Data7: 461

    Google Scholar 

  70. Ridgway K., Butler P. A. (1967) J. Chem. Eng. Data12: 509

    Google Scholar 

  71. Nataraj V., Rao M. R. (1967) Indian J. Technol.5: 512

    Google Scholar 

  72. Merkel K. (1940) Nova Acta Leopoldina9: 243

    Google Scholar 

  73. Deshpande D. D., Pandya M. V. (1965) Trans. Faraday Soc.61: 1858

    Google Scholar 

  74. Nigam R. K., Singh P. P., Singh K. C. (1979) Can. J. Chem.57: 2211

    Google Scholar 

  75. Velasco I., Otin S., Gutierrez Losa C. (1969) Int. Data Series, Sel. Data Mixtures Ser. A, 8

  76. Deshpande D. D., Pandya M. V. (1967) Trans. Faraday Soc.63: 2149

    Google Scholar 

  77. Hosseini S. M., Schneider G. (1963) Z. Phys. Chem.36: 137

    Google Scholar 

  78. Martin A. R., Collie B. (1932) J. Chem. Soc. 2658

  79. Kortuem G., Freier H. J. (1954) Monatsh.85: 693

    Google Scholar 

  80. Kortuem G., Moegling D., Woerner F. (1950) Chem. Ing. Tech.22: 453

    Google Scholar 

  81. Kortuem G., Freier H. J., Woerner F. (1953) Chem. Ing. Tech.25: 125

    Google Scholar 

  82. Mathieson A. R., Thynne J. C. J. (1956) J. Chem. Soc. (London) 3708

  83. Amaya K. (1961) Bull. Chem. Soc. Jpn.34: 1271.

    Google Scholar 

  84. Baluja Santos M. C. D. (1970) Acta Cient. Compostelana.7: 3

    Google Scholar 

  85. Watson A. E. P., McLure I. A., Bennett J. E., Benson G. C. (1965) J. Phys. Chem.69: 2753

    Google Scholar 

  86. Anisimova Z. K., Konakbaeva E. G., Shakparonov M. I. (1973) Teplofiz. Svojstva Vescesty I Materialov7: 167

    Google Scholar 

  87. Katayama T., Sung E. K., Lightfoot E. N. (1965) AIchE J.11: 924

    Google Scholar 

  88. Zharov V. T., Morachevsky A. G., Shapil L. G., Buevich T. A. (1968) Zh. Prikl. Khim.41: 2443

    Google Scholar 

  89. Rivenq F. (1969) Bull. Soc. Chim. Fr.9: 3034

    Google Scholar 

  90. Delzenne A. (1961) Bull. Soc. Chim. France 295

  91. Myers H. S. (1956) Ind. Eng. Chem.48: 1104

    Google Scholar 

  92. Black C. (1959) Ind. Eng. Chem.51: 211

    Google Scholar 

  93. Harsted B. S., Thomsen E. S. (1975) J. Chem. Thermodyn.7: 369

    Google Scholar 

  94. Tanaka R., Murakami S., Fujishiro R. (1974) J. Chem. Thermodyn.6: 209

    Google Scholar 

  95. Anantaraman A. V., Bhattacharya S. N., Palit S. R. (1963) Trans. Faraday Soc.59: 1101

    Google Scholar 

  96. Anantaraman A. V., Bhattacharya S. N., Palit S. R. (1961) Trans. Faraday Soc.57: 40

    Google Scholar 

  97. Diaz Pena M., Compostizo A., Crespo Colin A., Escudero I. (1980) J. Chem. Thermodyn.12: 1051

    Google Scholar 

  98. Rao M. N., Subbarao B. V. (1976) Indian J. Technol.14: 159

    Google Scholar 

  99. Nigam R. K., Singh P. P., Singh K. C. (1980) Thermochim. Acta35: 1

    Google Scholar 

  100. Heinrich J. (1975) Collect. Czech. Chem. Commun.40: 787

    Google Scholar 

  101. Schneider G. (1960) Z. Phys. Chem.24: 165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, B., Lacmann, R. Prediction of free excess enthalpy and excess enthalpy of nonelectrolyte mixtures with the modified TASQUAC model. Monatsh Chem 126, 35–49 (1995). https://doi.org/10.1007/BF00811755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811755

Keywords

Navigation