Catalysis Letters

, Volume 41, Issue 1–2, pp 7–11 | Cite as

Ion cyclotron resonance study of CO oxidation in the gas phase in the presence of rhenium cations with carbonyl and oxygen ligands. Comparison with heterogeneous catalysis

  • E. F. Fialko
  • A. V. Kikhtenko
  • V. B. Goncharov
  • K. I. Zamaraev


Gas-phase oxidation of CO in the presence of rhenium cations with carbonyl and oxygen ligands has been studied by Fourier transform ion cyclotron resonance (FT-ICR) spectrometry. Rhenium cations have been generated by the electron impact of Re2(CO)10 vapour. Contrary to the unreactive rhenium ions, rhenium monocarbonyi ions have been found to react with O2 molecules yielding rhenium monoxide ions and CO2 molecules. ReO+ ions are subsequently oxidized with O2 to di- and trioxide ions. The bond energies in rhenium oxide ions were estimated as D°(Re+−O)=104±14, D°(ReO+−O)<118, D°ReO 2 + −O)=122±4 kcal/mol. Simultaneous addition of CO and O2 molecules to the reaction volume leads to the gas-phase catalytic oxidation of CO with pairs of rhenium oxide ions ReO 3 + /ReO 2 + serving as the oxidized and reduced forms of the catalyst. The mechanisms of the above reactions are discussed in connection with that for oxidation of CO over solid oxide catalysts.


catalytic gas-phase CO oxidation carbon monoxide Fourier transform ion cyclotron resonance spectrometry rhenium ion carbonyls rhenium ion oxides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.K. Boreskov, in:Catalysis, Science and Technology, Vol. 3, eds. J.R. Anderson and M. Boudart, (Springer, Berlin, 1982) p. 39.Google Scholar
  2. [2]
    B.P. Bruns, Zh. Phiz. Chim. 14 (1947) 1337.Google Scholar
  3. [3]
    S.Z. Roginsky and Y.B. Zeldovich, Acta Physicochim. URSS 1 (1934) 554.Google Scholar
  4. [4]
    M.M. Kappes and R.H. Staley, J. Am. Chem. Soc. 103 (1981) 1287.Google Scholar
  5. [5]
    A.V. Kikhtenko, V.B. Goncharov and K.I. Zamaraev, Catal. Lett. 21 (1993) 353.Google Scholar
  6. [6]
    K.K. Irikura and J.L. Beauchamp, J. Phys. Chem. 95 (1991) 8344.Google Scholar
  7. [7]
    K.K. Irikura and J.L. Beauchamp, J. Am. Chem. Soc. 113 (1991) 2769.Google Scholar
  8. [8]
    M. Alleman, Hp. Kellerhals and K.-P. Wanczek, Chem. Phys. Lett. 75 (1980) 328.Google Scholar
  9. [9]
    M.V. Comisarov, G. Parisod and V. Grassi, Chem. Phys. Lett. 357 (1978) 413.Google Scholar
  10. [10]
    G.P. Smith, Polyhedron 7 (1988) 1605.Google Scholar
  11. [11]
    M.M. Kappes and R.H. Staley, J. Phys. Chem. 85 (1981) 942.Google Scholar
  12. [12]
    V.B. Goncharov, unpublished.Google Scholar
  13. [13]
    A. Yermakova, P. Valko and S. Vajda, Appl. Catal. 2 (1982) 139.Google Scholar
  14. [14]
    G. Gioumousis and D.P. Stevenson, J. Chem. Phys. 29 (1958) 294.Google Scholar
  15. [15]
    V.P. Zhdanov and K.I. Zamaraev, Catal. Rev. Sci. Eng. 24 (1982) 373.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • E. F. Fialko
    • 1
  • A. V. Kikhtenko
    • 1
  • V. B. Goncharov
    • 1
  • K. I. Zamaraev
    • 1
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations