Catalysis Letters

, Volume 41, Issue 1–2, pp 1–5 | Cite as

A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh

  • T. Bunluesin
  • E. S. Putna
  • R. J. Gorte


Steady-state, CO-oxidation kinetics have been studied at differential conversions on model, ceria-supported, Pt, Pd, and Rh catalysts, from 467 to 573 K, and the results compared to the alumina-supported metals. On each of the ceria-supported metals, there is a second mechanism for CO oxidation under reducing conditions which involves oxygen from ceria reacting with CO on the metals. The rates of this second process are independent of which metal is used. The process has a significantly lower activation energy (14±1 kJ/mol compared to 26±2 kJ/mol on alumina-supported catalysts) and different reaction orders for both CO (zeroth-order compared to −1) and 02 (0.40 to 0.46 compared to first-order). This second process leads to significant rate enhancements over alumina-supported catalysts at low temperatures, especially for Pt. The implications of these results for automotive catalysis are discussed.


Co oxidation kinetics ceria-supported catalysts Pt, Pd, Rh catalysts automotive catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.C. Summers and S. A. Ausen, J. Catal. 58 (1979) 131.Google Scholar
  2. [2]
    H.C. Yao and Y. F. Yu Yao, J. Catal. 89 (1984) 254.Google Scholar
  3. [3]
    E.C. Su, C.N. Montreuil and W.G. Rothschild, Appl. Catal. 17 (1985) 75.Google Scholar
  4. [4]
    A. Tschope, W. Liu, M. Flytzani-Stephanopoulos and J. Y. Ying, J. Catal. 157 (1995) 42.Google Scholar
  5. [5]
    J.G. Nunan, H.J. Robota, M.J. Cohn and S.A. Bradley, J. Catal. 133 (1992) 309.Google Scholar
  6. [6]
    S.H. Oh and C. C. Eickle, J. Catal. 112 (1988) 543.Google Scholar
  7. [7]
    G.S. Zafiris and R. J. Gorte, J. Catal. 143 (1993) 88.Google Scholar
  8. [8]
    T. Bunluesin, H. Cordatos and R.J. Gorte, J. Catal. 157 (1995) 222.Google Scholar
  9. [9]
    L.G. Tejuca, J.L.G. Fierro and J.M.D. Tascon, Adv. Catal. 36 (1989) 237.Google Scholar
  10. [10]
    C. Serre, F. Garin, G. Belot and G. Maire, J. Catal. 141 (1993) 9.Google Scholar
  11. [11]
    H. Cordatos, T. Bunluesin, J. Stubenrauch, J. M. Vohs and R. J. Gorte, J. Phys. Chem. 100 (1996) 785.Google Scholar
  12. [12]
    Y.F. Yu Yao and J.T. Kummer, J. Catal. 106 (1985) 307.Google Scholar
  13. [13]
    Y.F. Yu Yao, J. Catal. 87 (1984) 152.Google Scholar
  14. [14]
    G.S. Zafiris and R.J. Gorte, J. Catal. 140 (1993) 418.Google Scholar
  15. [15]
    J.A. Rodriguez and D.W. Goodman, Surf. Sci. Rep. 14 (1991) 27Google Scholar
  16. [16]
    C.H.F. Peden, D.W. Goodman, D.S. Blair, P.J. Berlowitz, G.B. Fisher and S.H. Oh, J. Phys. Chem. 92 (1988) 1563.Google Scholar
  17. [17]
    P.J. Berlowitz, C.H.F. Peden and D.W. Goodman, J. Phys. Chem. 92 (1988) 5213.Google Scholar
  18. [18]
    E.I. Altman and R.J. Gorte, J. Catal. 110 (1988) 191.Google Scholar
  19. [19]
    H. Cordatos, T. Bunluesin and R.J. Gorte, Surf. Sci. 323 (1995) 219.Google Scholar
  20. [20]
    E.I. Altman and R.J. Gorte, J. Catal. 113 (1988) 185.Google Scholar
  21. [21]
    E.S. Putna, J.M. Vohs and R.J. Gorte, submitted.Google Scholar
  22. [22]
    R.W. Joyner, Zirconium in catalysis: a review of current scientific literature, prepared for Magnesium Elektron Ltd.Google Scholar
  23. [23]
    P. Fornasiero, R. Di Monte, G. Ranga Rao, J. Kaspar, S. Meriani, A. Trovarelli and M. Graziani, J. Catal. 151 (1995) 168.Google Scholar
  24. [24]
    G.S. Zafiris and R.J. Gorte, J. Catal. 139 (1993) 561.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • T. Bunluesin
    • 1
  • E. S. Putna
    • 1
  • R. J. Gorte
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations