Potentiometric studies on the complexation equilibria between some trivalent lanthanide metal ions and biologically active 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS)

Potentiometrische Untersuchungen der Komplexierungsgleichgewichte zwischen einigen trivalenten Metallionen und biologisch aktivem 2-Hydroxy-1-naphthaldehyd-thiosemicarbazon (HNATS)

Summary

The chelation behaviour of some trivalent lanthanide and yttrium metal ion with biologically active 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS) has been investigated by potentiomotric measurements at 20±0.5°C in 75% (v/v) dioxane-water medium at various ionic strengths of sodium perchlorate. The method of Bjerrum and Calvin, as modified by Irving and Rossotti has been used to find out the values of\(\bar n\) (average number of ligand bound per metal ion) andpL (free ligand exponent). The formation constants of metal chelates have been computed on a PC-XT computer, using a program patterned after that of Sullivan et al. to give β n values using weighted least squares method. TheS min values (S min 2) have been calculated. The order of formation constants of chelates was found to be: La3+<Ce3+<Pr3+<Nd3+<Sm3+<Eu3+<Gd3+<Y3+<Tb3+<Dy3+. The formation constants of the chelates formed have been correlated to size and ionization potentials of the metal ions.

Zusammenfassung

Es wurde das Chelierungsverhalten einiger trivalenter Lanthanidenionen mit biologisch aktivem 2-Hydroxy-1-naphthaldehyd-thiosemicarbazon (HNATS) mittels potentiometrischer Messungen bei 20±0.5°C in 75% (v/v) Dioxan-Wasser bei verschiedener Ionenstärke an Natriumperchlorat untersucht. Die Methode nach Bjerrum und Calvin in der Modifikation nach Irving und Rossotti wurde zur Ermittlung der Werte\(\bar n\) (mittlere Anzahl an Liganden pro Metallion) undpL (Exponent an freiem Liganden) verwendet. Die Komplexbildungskonstanten wurden in Anlehnung an Sullivan et al. an einem PC-XT Computer errechnet. DieS min-Werte (S min2) wurden ebenfalls bestimmt. Die Reihung der Chelatbildungskonstanten war: La3+<Ce3+<Pr3+<Nd3+<Sm3+<Eu3+<Gd3+<Y3+<Tb3+<Dy3+. Die Bildungskonstanten sind mit der Größe und dem Ionisierungspotential der Metallionen zu korrelieren.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Singh S. K., Sharma R. K., Sindhwani S. K. (1984) Transition Met. Chem.9 (12): 473–6

    Google Scholar 

  2. [2]

    Singh S. K., Sindhwani S. K. (1986) Analysis14 (5): 245–51

    Google Scholar 

  3. [3]

    Singh S. K., Sharma R. K., Sindhwani S. K. (1986) Bull. Chem. Soc. Japan59 (4): 1223–27

    Google Scholar 

  4. [4]

    Salinas F., Jimenez Sanchez J. C., Lozano Ruiz M. M. (1987) Bull. Soc. Chim. Belg.96 (1): 73–74

    Google Scholar 

  5. [5]

    Barest P. A. (1965) Nature206: 1340

    Google Scholar 

  6. [6]

    Doamaral J. R., Blanz E. J., French F. A. (1969) J. Med. Chem.12: 21

    Google Scholar 

  7. [7]

    Bauer D. J., Vincent L. St., Kempe C. H., Downe A. W. (1963) LancetII: 494

    Google Scholar 

  8. [8]

    Petering H. C., Buskirk H. H., Underwood G. E. (1964) Cancer Res.64: 367

    Google Scholar 

  9. [9]

    Orlova N. N., Aksenova U. A., Selidovkin D. A., Bogadanova N. S., Pershin G. N. (1968) Russ. Pharm. Toxical. 348

  10. [10]

    West D. X., Carlson C. S., Whyte A. C. (1990) Transition Met. Chem.15: 43–47

    Google Scholar 

  11. [11]

    Domagk G., Behnisch R., Mietzsch F., Schmidt H. (1946) Naturwissenschaften33: 315

    Google Scholar 

  12. [12]

    Russay R. J., Stauffer Chemical Co., U. S. A., July 07, 1981, 4, 277, 500 Cl. 424–324; A01N37/18, Appl. March 24, 1980, 132, 957, pp. 3

  13. [13]

    Benjamin P., Chen LiPein (1964) J. Med. Chem.7 (3): 383–85

    Google Scholar 

  14. [14]

    Taniyama, Hyozo, Tanaka Y., Yakagaku Kinkyu (1965)36 (10): 319–28

  15. [15]

    Sahadev, Sharma R. K., Sindhwani S. K. (1988) Indian J. Chem.27 A: 643–44

    Google Scholar 

  16. [16]

    Sahadev, Sharma R. K., Sindhwani S. K. (1988) Thermochimica Acta126: 1–6

    Google Scholar 

  17. [17]

    Schwarzenbach G. (1956) “Complexometric titrations”. Methuen, London, pp. 177

    Google Scholar 

  18. [18]

    Sullivan J. C., Rydberg J., Miller W. F. (1959) Acta Chem. Scand.13: 2059

    Google Scholar 

  19. [19]

    Rydberg J., Sullivan J. C. (1959) Acta Chem. Scand.13: 2023

    Google Scholar 

  20. [20]

    Van Uitert L. G., Hass C. C. (1953) J. Am. Chem. Soc.75: 451

    Google Scholar 

  21. [21]

    Rao U. B., Mathur H. B. (1969) Indian J. Chem.7: 1234

    Google Scholar 

  22. [22]

    Nasanen R., Ekman A. (1952) Acta Chem. Scand.6: 1939

    Google Scholar 

  23. [23]

    Martell A. E., Smith R. M. (1974) Critical Stability Constant, Vol. 1. Plenum, New York

    Google Scholar 

  24. [24]

    Nair P. K. R., Srinivasulu K. (1979) J. Inorg. Nucl. Chem.41: 251

    Google Scholar 

  25. [25]

    Bjerrum J. (1941) Metal Amine Formation in Aqueous Solutions. P. Hasse, Copenhagen

    Google Scholar 

  26. [26]

    Stability Constants of Metal Ion Complexes, Part I. The Chemical Soc. Special Publication, London, pp. 2, 3, 5, 10, 13

  27. [27]

    Varshney A., Tandon J. P., Crowe A. J. (1986) Polyhedron, Vol. 5.3: 739–42

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, S.R.K., Sindhwani, S.K. Potentiometric studies on the complexation equilibria between some trivalent lanthanide metal ions and biologically active 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS). Monatsh Chem 123, 883–889 (1992). https://doi.org/10.1007/BF00811543

Download citation

Keywords

  • Lanthanide metal ion
  • 2-Hydroxyl-1-naphthaldehyde thiosemicarbazone (HNATS)
  • Formation constant
  • Potentiometry