Skip to main content
Log in

Acidity constants of adenosine-5′-mono- and diphosphate in various water-organic solvent mixtures

Aciditätskonstanten von Adenosin-5′-mono- und -diphosphat in verschiedenen organisch-wäßrigen Lösungsmittelgemischen

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

The acidity constants of adenosine-5′-mono- and diphosphate (AMP andADP) were determined at 25.00±0.1°C by potentiometric titration in pure water and different solvent mixtures (methanol, ethanol, N,N-dimethylformamide, dimethylsulfoxide, acetone, and dioxane). The ionization ofAMP andADP depends on both the proportion and the nature of the organic solvent used. ThepK a1 values for bothAMP andADP are slightly influenced as the solvent is enriched in ethanol and methanol and remains practically constant in presence of different amounts ofDMF andDMSO. A pronounced change in thepK a1 values is observed as the solvent is enriched in acetone or dioxane. It is concluded that the electrostatic effect has only a relatively small influence on the dissociation equilibrium, whereas other solvent effects such as solvent basicity, hydrogen bonding and protonsolvent interactions play an important role.

Zusammenfassung

Die Aciditätskonstanten von Adenosin-5′-mono- und -diphosphat wurden bei 25.0±0.1°C in reinem Wasser und in verschiedenen Lösungsmittelgemischen (Methanol, Ethanol, N,N-Dimethylformamid, Dimethylsulfoxid, Aceton und Dioxan) potentiometrisch bestimmt. Der Ionisierungsgrad vonAMP undADP hängt sowohl von der Menge als auch von der Art des organischen Lösungsmittels ab. DiepK a1-Werte vonAMP undADP werden durch Zugabe von Methanol und Ethanol nur wenig, durch verschiedene Mengen vonDMF undDMSO gar nicht, durch Aceton und Dioxan jedoch deutlich beeinflußt. Offensichtlich haben elektrostatische Effekte nur geringe Auswirkungen auf das Dissoziationsgleichgewicht, wogegen andere Faktoren wie Basizität des Lösungsmittels, Wasserstoffbrückenbindungen und Lösungsmittel-Proton-Wechselwirkungen eine bedeutende Rolle spielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spiro T. G. (1973) Phosphate transfer and its activation by metal ions; Alkaline phosphatase. In: Eichhorn G. L. (ed.) Inorganic biochemistry, vol 1. Elsevier, New York

    Google Scholar 

  2. Cooperman B. S. (1979) Metal ions in biological systems5: 79–125

    Google Scholar 

  3. Mildvan A. S. (1979) Adv. Enzymol. Relat. Areas Mol. Biol.49: 103–126

    Google Scholar 

  4. Sigel H. (ed.) (1979) Nucleotides and derivatives: their ligating ambivalency. In: Metal ions in biological systems. Dekker, New York

    Google Scholar 

  5. Smith R. M., Martell A. E., Chen Y. (1991) Pure Appl. Chem.63: 1015

    Google Scholar 

  6. Levene P. A., Simms H. S. (1925) J. Biol. Chem.65: 519

    Google Scholar 

  7. Taylor H. F. W. (1948) J. Chem. Soc. 765

  8. Alberty R. A., Smith R. M., Bock R. M. (1951) J. Biol. Chem.193: 425

    Google Scholar 

  9. Beers R. F., Steiner R. F. (1957) Nature (London)179: 1076

    Google Scholar 

  10. Wirth T. H., Davidson N. (1964) J. Am. Chem. Soc.86: 4314

    Google Scholar 

  11. Cheney G. E., Freiser H., Fernando Q. (1959) J. Am. Chem. Soc.81: 2611

    Google Scholar 

  12. Lewin S., Tann N. W. (1962) J. Chem. Soc. 1466

  13. Christensen J. J., Izatt R. M. (1962) J. Phys. Chem.66: 1030

    Google Scholar 

  14. Azab H. A. (1987) Bull. Soc. Chim. France 265

  15. Azab H. A. (1992) Talanta39(8): 913

    Google Scholar 

  16. Ahmed Hassan, Azab H. A., El-Gyar S. A., Khafagy Z. A. (1992) Can. J. Chem.70(6): 1684

    Google Scholar 

  17. Azab H. A. (1993) Talanta40(6): 863

    Google Scholar 

  18. Azab H. A., Ahmed Hassan, Khafagy Z. A. (1993) J. Chem. Eng. Data38: 231

    Google Scholar 

  19. Wu G., Izatt R. M., Bruening M. L., Jiang W., Azab H. A., Krakowiak K. E., Bradshaw J. S. (1992) J. Inclusion Phenom13: 121

    Google Scholar 

  20. Azab H. A., El-Gyar S. A., Ahmed Hassan, Khafagy Z. A. (1992) Bull. Fac. Sci. Assiut Univ.21: 79

    Google Scholar 

  21. Azab H. A. (1993) J. Chem. Eng. Data38: 453

    Google Scholar 

  22. Buisson D. H., Sigel H. (1974) Biochem. Biophys. Acta343: 45–63

    Google Scholar 

  23. Rossotti F. J. C., Rossotti H. (1965) J. Chem. Educ.42: 375

    Google Scholar 

  24. Douheret G. (1967) Bull. Soc. Chim. France 1412

  25. Douheret G. (1968) Bull. Soc. Chim. France 3312

  26. May P. M., Williams D. R. (1985) In: Leggett D. J (ed.) Computational methods for the determination of formation constants. Plenum Press, New York, pp 37–70

    Google Scholar 

  27. De Stefano C., Princi P., Rigano C., Sammartano S. (1987) Ann. Chim. (Rome)77: 643

    Google Scholar 

  28. Arena G., Rizzarelli E., Sammartano S., Rigano C. (1979) Talanta26: 1

    Google Scholar 

  29. Rigano C., Grasso M., Sammartano S. (1984) Ann. Chim. (Rome)74: 537

    Google Scholar 

  30. Dixon L. C. W. (1972) Nonlinear optimisation. English Universities Press Ltd., London

    Google Scholar 

  31. Levenberg K. (1944) Quart. App. Math.2: 164

    Google Scholar 

  32. Marquardt D. W. (1963) J. Soc. Indust. Appl. Math.11: 431

    Google Scholar 

  33. Bates R. G. (1964) Determination of pH theory and practice. Wiley, New York, p 198

    Google Scholar 

  34. Hammett L. P. (1928) J. Am. Chem. Soc.50: 2666

    Google Scholar 

  35. Gordon J. E. (1975) The organic chemistry of electrolyte solutions. Wiley, New York

    Google Scholar 

  36. Frank F., Ives D. J. G. (1966) Q. Rev.20: 1

    Google Scholar 

  37. Benneto H. P., Feakins D., Turner D. L. (1966) J. Chem. Soc. 1211

  38. Tomkins R. P. T. (1966) The thermodynamics of ion-solvation in methanol-water mixtures. Thesis, Birkbeck College, University of London

  39. Tremillon B. (1974) Chemistry in non-aqueous solvents. Reidel, Boston, p 68

    Google Scholar 

  40. Arnett E. M. (1963) Prog. Phys. Org. Chem.1: 223

    Google Scholar 

  41. Deno N. C., Wisotsky M. J. (1963) J. Am. Chem. Soc.85: 1735

    Google Scholar 

  42. Coetzee J. F., Padmanobhan G. R. (1965) J. Phys. Chem.69: 3193

    Google Scholar 

  43. Bates R. G. (1969) In: Coetzee J. F., Ritchie C. D. (eds.) Solute-solvent interactions. Marcel Dekker, New York, pp 51, 72

    Google Scholar 

  44. Ritchie C. D. (1969) In: Coetzee J. F., Ritchie C. D. (eds.) Solute-solvent interactions. Marcel Dekker, New York, pp 219–221, 223, 227

    Google Scholar 

  45. Bjerrum N. K. (1926) Dan. Vidensk. Selsk., Mat.-Fys. Medd. 7, 9

  46. Fuoss R. M., Krausv C. A. (1933, 1935) J. Am. Chem. Soc.55: 2387;57: 1

    Google Scholar 

  47. Kolthoff I. M., Bruckenstein S. (1956, 1957) J. Am. Chem. Soc.78: 1;79: 1; Bruckenstein S., Kolthoff I. M. (1956) J. Am. Chem. Soc.78: 2974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azab, H.A., El-Nady, A.M. & El-Shatoury, S.A. Acidity constants of adenosine-5′-mono- and diphosphate in various water-organic solvent mixtures. Monatsh Chem 125, 1049–1057 (1994). https://doi.org/10.1007/BF00811512

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811512

Keywords

Navigation