Monatshefte für Chemie / Chemical Monthly

, Volume 122, Issue 12, pp 1075–1088 | Cite as

Strukturelle Abwandlungen an N-Acetylneuraminsäure, 25. Mitt.: Synthese von Methyl-2-α-glycosiden von 4-epi-, 7-epi-, 8-epi- und 7,8-bis-epi-N-Acetylneuraminsäure

  • B. P. Bandgar
  • E. Zbiral
Organische Chemie Und Biochemie

Structural transformations of N-acetylneuraminic acid, XXV: Synthesis of methyl-2-α-glycosides of 4-epi-, 7-epi-, 8-epi-, and 7,8-bis-epi-N-acetylneuraminic acid


The α-methylketoside of N-acetylneuraminic acid methylester (4) is transformed via the deacetylated compound5 into the 9,8-O-isopropylidenderivative6 which could be oxidized regioselectively by RuO4 to the corresponding 4-oxo-sialic acid analogue7. Reduction with the boraneammonia complex produces a 1:1 mixture of6 and the desired α-methylketoside of 9,8-O-isopropyliden-4-epi-N-acetyl-neuraminic acid methylester (8). Removing of the isopropylidene group gives the α-methylketoside of 4-epi-N-acetylneuraminic acid methylester (9), which was further transformed to the ammonium salt of 4-epi-N-acetylneuraminic acid α-methylketoside (10). On the other hand compound5 was turned into the 4,8,9-tri-O-t-butyldimethylsilylderivative11 a from which the corresponding 7-oxo-compound12 by oxidation with RuO4 derives. The reduction of12 with BH3 - NH3 yielded a 1:1 mixture of the starting material11 a and the desired 7-epi-derivative13 a which gives either via the purified peracetylated α-methylketosid of 7-epi-N-acetylneuraminic acid methylester (14) or a direct saponification the sodium salt of 7-epi-N-acetylneuraminic acid-α-methylketoside (15).

Applying the Königs-Knorr procedure to the peracetylated 8-epi-N-acetylneuraminic acid methylester (16) gives rise to the formation of a 1:1 mixture of the corresponding α- and β-methylketosides17 and18 besides traces of the corresponding 2,3-dideoxy-2,3-dideohydro-sialic acid derivative19. After chromatographic separation of17 further saponification leads to the sodium salt of 8-epi-N-acetylneuraminic acid-α-methylketoside (20). In an analogous procedure the sodium salt of 7,8-di-epi-N-acetylneuraminic acid-α-methylketoside (25) was prepared starting from the peracetylated 7,8-di-epi-N-acetylneuraminic acid methylester (21), whereby a mixture of the α- and β-methylketosides22 and23 was formed in a ratio 95:5 besides traces of the peracetylated 2,3-dideoxy-2,3-didehydrosialic acid methylester (24).


Sialic acid analogues Methyl-α-ketosides of sialic acid analogues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    24. Mitt.: Hartmann M., Zbiral E. (1991) Monatsh. Chem.122: 995Google Scholar
  2. [2]
    Schauer R. (ed.) (1982) Cell Biology Monographs, Vol. 10. Springer, Wien New YorkGoogle Scholar
  3. [3]
    Schauer R. (1982) Adv. Carbohydr. Chem. Biochem.40: 132Google Scholar
  4. [4] a)
    Zbiral E., Brandstetter H. H. (1985) Moatsh. Chem.116: 87;Google Scholar
  5. [4] (b)
    Schmid W., Christian R., Zbiral E. (1988) Tetrahedron Lett.29: 3643;Google Scholar
  6. [4] c)
    Christian R., Schulz G., Brandstetter H. H., Zbiral E. (1987) Carbohydr. Res.162: 1Google Scholar
  7. [5] a)
    Brossmer R., Rose U., Kasper D., Smith T. L., Grasmuk H., Unger F. M. (1980) Biochem. Biophys. Res. Commun.96: 1282;Google Scholar
  8. [5] b)
    Petrie C. R., Korytnyk W. (1981) Anal. Biochem.131: 153;Google Scholar
  9. [5] c)
    Higa H. H., Paulson J. C. (1985) J. Biol. Chem.260: 8838Google Scholar
  10. [6] a)
    Simon E. S., Bednarski M. D., Whitesides G. M. (1988) J. Am. Chem. Soc.110: 7159;Google Scholar
  11. [5] b)
    Christian R., Schreiner E., Zbiral E., Schulz G. (1989) Carbohydr. Res.194: 49;Google Scholar
  12. [5] c)
    Zbiral E., Schreiner E., Christian R. (1989) Carbohydr. Res.194: C 15Google Scholar
  13. [7] a)
    Hartmann M., Christian R., Zbiral E. (1990) Liebigs Ann. Chem.: 83;Google Scholar
  14. [7] b)
    Schreiner E., Christian R., Zbiral E. (1990) Liebigs Ann. Chem.: 93Google Scholar
  15. [8] a)
    Schauer R., Wember M. (1971) Hoppe Seyler's Z. Physiol. Chem.352: 1517;Google Scholar
  16. [8] b)
    Schauer R., Wember M., Wirtz-Peitz F., Ferreira do Amaral C. (1971) Hoppe Seiler's Physiol. Chem.352: 1073;Google Scholar
  17. [8] c)
    Shukla A. K., Schauer R. (1986) Anal. Biochem.158: 158;Google Scholar
  18. [8] d)
    Beau J. M., Schauer R. (1980) Eur. J. Biochem.106: 531Google Scholar
  19. [9] a)
    Suttajit M., Winzler, R. (1971) J. Biol. Chem.246: 3398;Google Scholar
  20. [9] b)
    Suttajit M., Urban C., McLean R. L. (1971) J. Biol. Chem.246: 810Google Scholar
  21. [10] a)
    Schauer R., Stoll S., Zbiral E., Schreiner E., Brandstetter H. H., Vasella A., Baumberger F. (1987) Glycoconjugate J.4: 361;Google Scholar
  22. [10] b)
    Zbiral E., Kleineidam R. G., Schreiner E., Hartmann M., Christian R., Schauer R. (1991) Biochem. J. (in press)Google Scholar
  23. [11]
    Kim M.-J., Hennen W. J., Sweers H. M., Wong C.-H. (1988) J. Am. Chem. Soc.110: 6481Google Scholar
  24. [12] a)
    Zbiral E., Brandstetter H. H., Christian R., Schauer R. (1987) Liebigs Ann. Chem: 781;Google Scholar
  25. [12] b)
    Zbiral E., Schreiner E., Christian R., Kleineidam R. G., Schauer R. (1989) Liebigs Ann. Chem.: 159;Google Scholar
  26. [12] c)
    Schreiner E., Zbiral E., Kleineidam R. G., Schauer R. (1991) Liebigs Ann. Chem.: 129;Google Scholar
  27. [12] d)
    Schreiner E., Zbiral E., Kleineidam R. G., Schauer R. (1991) Carbohydr. Res.216: 61Google Scholar
  28. [13]
    Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C. (1983) Nature (London)304: 76Google Scholar
  29. [14]
    Wiley D. C., Skehel J. J. (1987) Ann. Rev. Biochem.56: 365Google Scholar
  30. [15]
    Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. (1988) Nature (London)333: 426Google Scholar
  31. [16]
    Sauter N. K., Bednarski M. D., Wurzburg B. A., Hanson J. E., Whitesides C. M., Skehel J. J., Wiley D. C. (1989) Biochemistry28: 8388Google Scholar
  32. [17]
    Pritchett T. J., Brossmer R., Rose U., Paulson J. C. (1987) Virology160: 502Google Scholar
  33. [18]
    2-Desoxy-2Heq-N-acetylneuraminsäure4b) weist 75% der Inhibition von Methyl-2-α-N-acetyl-neuraminsäure auf; Kelm S., Paulson J. C., Schmid W., Zbiral E. (unpublizierte Ergebnisse)Google Scholar
  34. [19]
    Bandgar B. P., Hartmann M., Schmid W., Zbiral E. (1990) Liebigs Ann. Chem.: 1185Google Scholar
  35. [20]
    Meindl P., Tuppy H. (1965) Monatsh. Chem.96: 802Google Scholar
  36. [21]
    Czarniecki M. F., Thornton E. R. (1971) J. Am. Chem. Soc.99: 8273Google Scholar
  37. [22]
    Baumberger F., Vasella A., Schauer R. (1986) Helv. Chim. Acta69: 1927Google Scholar
  38. [23]
    Ogura H., Furuhata K. (1986) Carbohydr. Res.158: 37Google Scholar
  39. [24]
    Brandstetter H. H., Zbiral E. (1983) Liebigs Ann. Chem.: 2055Google Scholar
  40. [25]
    Brandstetter H. H., Zbiral E., Schulz G. (1982) Liebigs Ann. Chem.: 1Google Scholar
  41. [26]
    Hartmann M., Zbiral E. (1989) Monatsh. Chem.120: 899Google Scholar
  42. [27]
    Zbiral E., Schreiner E., Salunkhe M. M., Schulz G., Kleineidam R. G., Schauer R. (1989) Liebigs Ann. Chem.: 519Google Scholar
  43. [28]
    Salunkhe M., Hartmann M., Schmid W., Zbiral E. (1988) Liebigs Ann. Chem.: 187Google Scholar
  44. [29]
    Bandgar B. P. (1991) Dissertation. Universität WienGoogle Scholar
  45. [30]
    Still W. C., Kalm M., Mitra A. (1978) J. Org. Chem.43: 2923Google Scholar
  46. [31]
    Courtney J. L. (1986) In: Mijs W. J., de Jonge C. R. H. I. (eds.) Organic Synthesis by Oxidation with Metal Compounds. Plenum Press, New York, p. 464Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • B. P. Bandgar
    • 1
  • E. Zbiral
    • 1
  1. 1.Institut für Organische ChemieUniversität WienWienÖsterreich

Personalised recommendations