Advertisement

Monatshefte für Chemie / Chemical Monthly

, Volume 126, Issue 8–9, pp 923–931 | Cite as

Synthesis of a symmetric multivalent molecule containing four carbohydrate substituents

  • W. H. Binder
  • W. Schmid
Organische Chemie Und Biochemie

Summary

Starting with allyl- and pent-4-enyl-β-D-glucopyranosides4–7, differentD-Glucose units (8–15) containing alkyl spacers of variable lenght and with different end groups can be prepared. Reaction of four equivalents of the caesium salt derived from propan-4-carboxy-1-yl-2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside15 with pentaerythrityltetrabromide yields the tetravalent molecule16.

Keywords

Carbohydrates Dendrimers Spacer 

Synthese eines symmetrischen multivalenten Moleküls mit vier Kohlenhydratsubstituenten

Zusammenfassung

Ausgehend von den Allyl- und Pent-4-enyl-β-D-glucopyranosiden4–7 können dieD-Glucosederivate8–15 dargestellt werden, welche am anomeren Zentrum unterschiedlich lange Spacereinheiten mit verschiedenen Endgruppen besitzen. Bei Reaktion von vier Äquivalenten des Caesiumsalzes von Propan-4-carboxy-1-yl-2,3,4,6-tetra-O-acetyl-β-D-glucopyranosid15 mit Pentaerythrityltetrabromid entsteht das tetravalente Molekül16.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jain A, Huang SG, Whitesides GM (1994) J Am Chem Soc116: 5057–5062Google Scholar
  2. [2]
    Spaltenstein A, Whitesides GM (1991) J Am Chem Soc113: 686–687Google Scholar
  3. [3] a)
    Glick GD, Knowles JR (1991) J Am Chem Soc113: 4701–4703Google Scholar
  4. [3] b)
    Mortell KH, Gingras M, Kiessling LL (1994) J Am Chem Soc116: 12053–12054Google Scholar
  5. [4]
    Sabesan S, Duus JØ, Domaille P, Kelm S, Paulson JC (1991) J Am Chem Soc113: 5865–5866Google Scholar
  6. [5]
    Sakai S, Sasaki T (1994) J Am Chem Soc116: 1587–1588Google Scholar
  7. [6] a)
    Sabesan S, Paulson JC (1986) J Am Chem Soc108: 2068–2080Google Scholar
  8. [6] b)
    DeFrees SA, Kosch W, Way W, Paulson JC, Sabesan S, Halcomb RL, Huang DH, Ichikawa Y, Wong C-H (1995) J Am Chem Soc117: 66–79Google Scholar
  9. [7]
    Issberner J, Moors R, Vögtle F (1994) Angew Chem106: 2507–2514Google Scholar
  10. [8]
    Tomalia DA, Naylor AM, Goddard III WA (1990) Angew Chem102: 119–157Google Scholar
  11. [9]
    Newkome GR, Moorefield CN, Baker GR (1992) Aldrichimica Acta25: 31–38Google Scholar
  12. [10]
    Dandliker PJ, Diederich F, Gross M, Knobler CB, Louati A, Sanford EM (1994) Angew Chem106: 1821–1824Google Scholar
  13. [11]
    Bryce MR, Devonport W, Moore AJ (1994) Angew Chem106: 1862–1864Google Scholar
  14. [12]
    Newkome GR, Yao Z, Baker GR, Gupta VK (1985) J Org Chem50: 2003–2004Google Scholar
  15. [13]
    Mekelburger H-B, Jaworek W, Vögtle F (1992) Angew Chem104: 1609–1614Google Scholar
  16. [14]
    Hawker CJ, Frechet JMJ (1992) J Chem Soc Perkin TransI: 2459–2469Google Scholar
  17. [15]
    Roy R, Zanini D, Mennier SJ, Romanowska A (1993) J Chem Soc Chem Commun: 1869–1872Google Scholar
  18. [16]
    Padias AB, Hall Jr HK, Tomalia DA, McConnell JR (1987) J Org Chem: 5305–5312Google Scholar
  19. [17]
    available from Aldrich CorpGoogle Scholar
  20. [18]
    Lemieux RU, Bundle DR, Baker DA (1975) J Am Chem Soc97: 4076–4083Google Scholar
  21. [19]
    Whistler RL, Wolfrom ML (1963) Methods in Carbohydrate Chemistry, vol II, p 212Google Scholar
  22. [20]
    Aristoff RK (1985) J Am Chem Soc107: 7972Google Scholar
  23. [21]
    Dhaon HK, Olsen RK, Ramasamy KJ (1982) J Am Chem Soc 47: 1962Google Scholar
  24. [22]
    Lee JB (1966) J Am Chem Soc88: 3440Google Scholar
  25. [23]
    Kruizinga WH, Strijtveen B, Kellog RM (1981) J Org Chem: 4321Google Scholar
  26. [24]
    Pittenauer E, Allmaier G, Schmid ER (1994) Org Mass Spectrometry 108Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. H. Binder
    • 1
  • W. Schmid
    • 1
  1. 1.Institute of Organic ChemistryUniversity of ViennaWienAustria

Personalised recommendations