Skip to main content
Log in

Synthese von Metallkomplexen des Tetra-(2,3-anthra)-tetraazaporphins und Vergleich ihrer Elektronenabsorptionsspektren mit denen anderer anellierter Tetraazaporphinsysteme

Synthesis of metal complexes of tetra-(2,3-anthra)-tetraazaporphin and comparison of their electronic absorption spectra with other linearly annellated tetraazaporphin systems

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Copper, nickel and aluminium derivatives of tetra-2,3-anthratetraazaporphin bearing different substituents in the anthracen part have been prepared. The absorption spectra of these substances in different solvents are given and compared with metal complexes of other linearly annellated tetraazaporphins. In the series of vanadyl complexes of tetraazaporphin (λmax 597 nm), tetra-[1,2-(4-tert-butyl)-benzo]-tetraazaporphin (λmax 698 nm), tetra-[2,3-(6-tert-butyl)-naphtho]-tetraazaporphin (λmax 807 nm), tetra-2,3-(anthra)-tetraazaporphin (λmax 932 nm), tetra-2,3-(tetraceno)-tetraazaporphin (λmax 1055 nm), the absorption maxima of the Q-band are shifted per annellated benzene ring about 100 nm to longer wave lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Moser F. H., Thomas A. L., Phthalocyanine Compounds, Monograph No. 157. Washington, D.C.: American Chemical Society. 1963.

    Google Scholar 

  2. Kugel R., Svirmickas A., Katz J. J., Hindman J. C., Optics Commun.23, 189 (1977).

    Google Scholar 

  3. Behret H., Sandsteda G., Scheren G. G., Ber. Bunsenges. Phys. Chem.84, 1031 (1980).

    Google Scholar 

  4. Tanno T., Woehrle D., Kaneko M., Yamada A., Ber. Bunsenges. Phys. Chem.84, 1032 (1980).

    Google Scholar 

  5. Rieke P. C., Linkous C. L., Armstrong N. R., J. Phys. Chem.88, 1351 (1984).

    Google Scholar 

  6. Armstrong N. R., in: Chemically Modified Surfaces in Catalysis and Electrocatalysis (Miller J. S., ed.). Washington, D.C.: American Chemical Society. 1982; ACS Symp. Ser., No. 192, S. 205–221.

    Google Scholar 

  7. Hanack M., Seelig F. F., Strähle J., Z. Naturforsch.A 34, 983 (1979).

    Google Scholar 

  8. Gouterman M., in: The Porphyrins (Dolphin D., ed.), Vol. III, S. 1. New York: Academic Press. 1978.

    Google Scholar 

  9. Marks T. J., Stojakovic D. R., J. Amer. Chem. Soc.100, 1695 (1978).

    Google Scholar 

  10. Davison J. B., Wynne K. J., Macromolecules11, 186 (1978).

    Google Scholar 

  11. Freyer W.,Minh le quoc, J. Prakt. Chem., in Druck.

  12. Kopranenkov V. N., Gonsarova L. S., Lukjanec E. A., Ž. obšč. Chim.47, 2143 (1975).

    Google Scholar 

  13. Gundermann K.-D.,Klockenbring G.,Röker C.,Brinkmeyer H., Liebigs Ann. Chem.1976, 1873.

  14. Kovšev E. J., Pucnova V. A., Lukjanec E. A., Ž org. Chim.7, 369 (1971).

    Google Scholar 

  15. Michalenko S. A., Barkanova S. V., Lebedev O. L., Lukjanec E. A., Ž. obšč. Chim.41, 2735 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freyer, W., Minh, L.q. Synthese von Metallkomplexen des Tetra-(2,3-anthra)-tetraazaporphins und Vergleich ihrer Elektronenabsorptionsspektren mit denen anderer anellierter Tetraazaporphinsysteme. Monatsh Chem 117, 475–489 (1986). https://doi.org/10.1007/BF00810897

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00810897

Keywords

Navigation