Monatshefte für Chemie / Chemical Monthly

, Volume 117, Issue 12, pp 1367–1378 | Cite as

Zur Gültigkeit desZenschen Gesetzes und desLe Chatelierschen Prinzips in einigen Phasen mitGrimm-Sommerfeld-Bindung

  • Gerhard Bucher
  • Martin Ellner
  • Ferdinand Sommer
  • Bruno Predel
Anorganische Und Physikalische Chemie

On the validity ofZen's law and of theLe Chatelier principle in some phases withGrimm-Sommerfeld bonding

Abstract

By extremely rapid cooling of the liquid alloys, solid solutions in the AlSb-GaSb, GaSb-Ge, and InSb-Sn systems are obtained. In order to attain the high cooling rates (107–108 Ks−1) a shock wave tube has been used. The AlSb-GaSb and GaSb-InSb systems, repectively, form continuous series of stable solid solutions, whereas in the GaSb-Ge and InSb-Ge systems solid solutions occur only within limited regions. They are partly metastable. In all cases,Zen's law is fulfilled. High pressure modifications in the systems investigated here behave according to theLe Chatelier principle with respect to their transformation volumes.

Keywords

Grimm-Sommerfeld compounds High pressure phases (compounds) Metastable phases (compounds) Valence electron concentration rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Parthé E (1964) Crystal chemistry of tetrahedral structures. Gordon and Breach, LondonGoogle Scholar
  2. [2]
    Miller JF, Goering HL, Himes RC (1960) J Electrochem Soc 107: 527Google Scholar
  3. [3]
    Burdiyan II (1959) Fiz Tverdogo Tela 1: 1360; (1960) Soviet Phys-Solid State 1: 1246Google Scholar
  4. [4]
    Woolley JC, Smith BA, Lees DG (1956) Proc Phys Soc 69: 1339Google Scholar
  5. [5]
    Duwez P, Willens RH, Klement W (1960) J Appl Phys 31: 1136Google Scholar
  6. [6]
    Churcher CD, Heine V (1984) Acta Cryst A 40: 291Google Scholar
  7. [7]
    Alonso JA, Gonzáles DJ, Iniguez MP (1984) Phys Stat Sol (b) 125: 485Google Scholar
  8. [8]
    Hafner J (1985) J Phys F: Met Phys 15: L 43Google Scholar
  9. [9]
    Harris IR, Speight JD (1985) J Less-Common Metals 114: 183Google Scholar
  10. [10]
    Henderson B, O'Connell D (1985) J Less-Common Metals 114: 207Google Scholar
  11. [11]
    Akopjan RA, Jevdokimov AV, Krasina VI (1979) Phys Met Metall 46 No 5: 203Google Scholar
  12. [12]
    Pearson WB (1972) The crystal chemistry and physics of metals and alloys. Wiley-Interscience, New YorkGoogle Scholar
  13. [13]
    Parthé E (1984) High temperatures-high pressures 16: 553Google Scholar
  14. [14]
    Parthé E (1961) Z Kristallographie 115: 52Google Scholar
  15. [15]
    Rayson HW, Goulding CW, Raynor GV (1959) Acta Met 7: 125Google Scholar
  16. [16]
    Cahn RW, Krishnanand KD, Laridjani M, Greenholz M, Hill R (1976) Mat Sci Engineering 23: 83Google Scholar
  17. [17]
    Scott MG, Leake JA (1975) Acta Met 23: 503Google Scholar
  18. [18]
    Predel B, Duddek G (1978) Z Metallkunde 69: 773Google Scholar
  19. [19]
    Willardson RK,Goering HL,Middleton AE (1955) US Pat 2710253Google Scholar
  20. [20]
    Burdiyan II, Borshchevskij AS (1958) Zhur Tekh Fiz 28: 2684Google Scholar
  21. [21]
    Joullié A, Gautier P (1979) J Cryst Growth 47: 100–108Google Scholar
  22. [22]
    Jamieson JC (1963) Science 139: 1183Google Scholar
  23. [23]
    Gorjunova NA, Fedorova NN (1955) Zh Techn Fiz SSSR 25: 1339Google Scholar
  24. [24]
    Köster W, Ulrich W (1958) Z Metallkunde 49: 365Google Scholar
  25. [25]
    Antypas GA (1972) J Cryst Growth 16: 181Google Scholar
  26. [26]
    Ansara I, Gambino M, Bros JP (1976) J Cryst Growth 32: 101Google Scholar
  27. [27]
    Gratton FM, Wooley JC (1978) J Electrochem Soc 125: 657Google Scholar
  28. [28]
    Landolt-Börnstein (1971) Neue Serie, Bd 6. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. [29]
    Smith PL, Martin JE (1962) Nature 196: 761Google Scholar
  30. [30]
    Liu CY, Spain IL (1978) J Phys Chem Solids 39: 113Google Scholar
  31. [31]
    Rooymans CJM (1963) Phys Lett 4: 186Google Scholar
  32. [32]
    Gerdes F, Predel B (1981) J Less-Common Metals 79: 289Google Scholar
  33. [33]
    Panish MB (1966) J Less-Common Metals 10: 416Google Scholar
  34. [34]
    Jamieson JC (1963) Science 139: 845Google Scholar
  35. [35]
    Löhberg K (1968) Metall 22: 777Google Scholar
  36. [36]
    Hägg G, Hybinette AG (1935) Phil Mag 20: 913Google Scholar
  37. [37]
    Fink CG, Jette ER, Katz S, Schnettler FJ (1945) Trans Electrochem Soc 88: 229Google Scholar
  38. [38]
    Ellner M (1978) J Less-Common Metals 60: P 15Google Scholar
  39. [39]
    Ellner M (1980) J Less-Common Metals 75: P 5Google Scholar
  40. [40]
    Ellner M (1981) J Less-Common Metals 78: P 21Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Gerhard Bucher
    • 1
  • Martin Ellner
    • 1
  • Ferdinand Sommer
    • 1
  • Bruno Predel
    • 1
  1. 1.Max-Planck-Institut für MetallforschungInstitut für Werkstoffwissenschaften Stuttgart und Institut für Metallkunde der Universität StuttgartStuttgart 1Bundesrepublik Deutschland

Personalised recommendations