Skip to main content
Log in

The existence of dual Cu site involved in the selective catalytic reduction of NO with propene on Cu/ZSM-5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to establish the role of surface species in the selective catalytic reduction (SCR), in situ IR studies were carried out using a DRIFT (diffuse reflectance infrared Fourier transform) cell in gas mixtures of various C3H6/NO ratios containing excess oxygen. The location and mobility of Cu ions were investigated by recording the relevant bands of CO adsorbed on Cu/ZSM-5. The nitro species coordinated on Cu2+ and the -NCO surface complex as possible intermediates were observed in the reduction of NO with propene on Cu/ZSM-5 between 350 and 400°C. The reactivities of these species toward NO, O2 and propene were examined. The nitro species can react with propene very rapidly to form N2 without the formation of NCO species. NCO also reacts with NO2 and/ or NO at 350°C. IR spectra of CO adsorbed on cuprous ions show that two kinds of Cu ions, which are responsible for the activation of NO and propene respectively, exist on Cu/ZSM-5. From these results, a dual site mechanism involving nitro species and -NCO species as intermediates is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Ansell, A.F. Diwell, S.E. Solunski, J.W. Hayes, R.R. Rajaram, T.J. Truex and P. Walker, Appl. Catal. B 2 (1993) 81.

    Google Scholar 

  2. K. Yogo, T. Ono, I. Terasaki, M. Egushira, N. Okazaki and E. Kikuchi, Shokubai 36 (1994) 92.

    Google Scholar 

  3. B.K. Cho, J. Catal. 142 (1993) 418.

    Google Scholar 

  4. R. Burch and P.J. Millington, Appl. Catal. B 2 (1993) 101.

    Google Scholar 

  5. C. Yokoyama and M. Misono, J. Catal. 150 (1994) 9.

    Google Scholar 

  6. J.O. Pentunchi and W.K. Hall, Appl. Catal. B 2 (1993) L17.

    Google Scholar 

  7. I. Halasz, A. Brenner and K.Y.S. Ng, Catal. Lett. 34 (1995) 151.

    Google Scholar 

  8. D.B. Lukyanov, G. Sill, J.L. d'Itri and W.K. Hall, J. Catal. 153 (1995) 265.

    Google Scholar 

  9. T. Beutel, B.J. Adelman, G.D. Lei and W.H.M. Sachtler, Catal. Lett. 32 (1995) 83.

    Google Scholar 

  10. B.J. Adelman, T. Beutel, G.-D. Lei and W.M.H. Sachtler, J. Catal. 158 (1996) 327.

    Google Scholar 

  11. M. Iwamoto, S. Yokoo, K. Sakai and S. Kagawa, J. Chem. Soc. Faraday Trans. 77 (1981) 1629.

    Google Scholar 

  12. Y. Li and W.K. Hall, J. Catal. 129 (1991) 202.

    Google Scholar 

  13. B.K. Cho, J. Catal. 155 (1995) 184.

    Google Scholar 

  14. M. Sasaki, H. Hamada, Y. Kintaichi and T. Ito, Catal. Lett. 15 (1992) 297.

    Google Scholar 

  15. T. Beutel, B. Adelman and W.M.H. Sachtler, Catal. Lett. 37 (1996) 125.

    Google Scholar 

  16. T.E. Hoost, K.A. Laframboise and K. Otto, Catal. Lett. 37 (1996) 153.

    Google Scholar 

  17. H. Yahiro, Y. Yu-u, H. Takeda, N. Mizuno and M. Iwamoto, Shokubai 35 (1993) 126.

    Google Scholar 

  18. Y. Ukisu, S. Sato, G. Muramatsu and K. Yoshida, Catal. Lett. 11 (1991) 177.

    Google Scholar 

  19. I.C. Hwang, D.H. Kim and S.I. Woo,Proc. 5th Korean-Japan Symp. on Catalysis, eds. S.I. Woo and D.C. Park (1995) p. 65.

  20. J.S. Yu and L. Kevan, J. Phys. Chem. 94 (1990) 5995.

    Google Scholar 

  21. M. Nakao, S. Nishiyama, S. Tsuruya and M. Masai, Inorg. Chem. 31 (1992) 4662.

    Google Scholar 

  22. A.V. Kucherov, A.A. Slinkin, S.S. Goryasheuko and K.I. Slovetskaya, J. Catal. 118 (1989) 459.

    Google Scholar 

  23. A.V. Kucherov, T.N. Kucherova and A.A. Slinkin, Catal. Lett. 10 (1991) 289.

    Google Scholar 

  24. A.V. Kucherov and A.A. Slinkin, Zeolites 6 (1986) 175.

    Google Scholar 

  25. M.W. Anderson and L. Kevan, J. Phys. Chem. 91 (1987) 4174.

    Google Scholar 

  26. Y. Itho, S. Nishiyama, S. Tsuruya and M. Masai, J. Phys. Chem. 98 (1994) 960.

    Google Scholar 

  27. W. Grünert, N.W. Hayes, R.W. Joyner, E.S. Shpiro, M.R.H. Siddiqui and G.N. Baeva, J. Phys. Chem. 98 (1994) 10832.

    Google Scholar 

  28. N.W. Hayes, W. Grünert, G.J. Hutchings, R.W. Joyner and S. Shpiro, J. Chem. Soc. Chem. Commun. (1994) 531.

  29. R.J. Argauuer and G.R. Landolt, US Patent 702,886 (1972).

    Google Scholar 

  30. J. Valyon and W.K. Hall, J. Phys. Chem. 97 (1993) 1204.

    Google Scholar 

  31. F. Solymosi and T. Bansagi, J. Catal. 156 (1995) 75.

    Google Scholar 

  32. F. Witzel, G.A. Sill and W.K. Hall, J. Catal. 149 (1994) 229.

    Google Scholar 

  33. J.S. Yu, J.M. Comets and L. Kevan, J. Phys. Chem. 91 (1987) 4174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.C., Kim, D.H. & Woo, S.I. The existence of dual Cu site involved in the selective catalytic reduction of NO with propene on Cu/ZSM-5. Catal Lett 42, 177–184 (1996). https://doi.org/10.1007/BF00810685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00810685

Keywords

Navigation