Advertisement

Archive of Applied Mechanics

, Volume 62, Issue 7, pp 463–473 | Cite as

Parametric vibrations of beam with crack

  • M. Krawczuk
  • W. M. Ostachowicz
Originals

Summary

The paper presents a mathematical model of transverse vibrations of a Bernoulli-Euler beam with a closing crack. In damaged cross-sections of the beam there were applied elastic elements of flexibility calculated on the basis of the laws of fracture mechanics. Making use of the elaborated model, an analysis of the effect of magnitude and position of the crack upon the basic instability area of the beam was carried out.

Keywords

Neural Network Mathematical Model Complex System Information Theory Fracture Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Parametrische Schwingungen eines Balkens mit Riß

Übersicht

Es wird ein mathematisches Modell für die Biegeschwingungen eines Euler-Bernoulli-Balkens mit schließendem Riß vorgestellt. Geschädigte Balkenteile werden ersetzt durch elastische Elemente mit einer Nachgiebigkeit, die nach den Gesetzen der Bruchmechanik berechnet wird. Mit diesem Modell wird der Einfluß von Rißposition und-größe auf den wesentlichen Instabilitätsbereich der Balkenschwingungen untersucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knott, J. F.: Fundamentals of fracture mechanics. London: Butterworths 1976Google Scholar
  2. 2.
    Wauer, J.: On the dynamics of cracked rotors: A literature survey. Appl. Mech. Rev. 43 (1990) 13–17Google Scholar
  3. 3.
    Papadopoulos, C. A.; Dimarogonas, A. D.: Stability of cracked rotors in the coupled vibrations mode. In: 11th Biennial Conf. of mechanical vibration and noise, pp. 25–34. Boston: A. Muszynska. Benthy Rotor Dynamic Research Corp 1987Google Scholar
  4. 4.
    Papadopoulos, C. A.; Dimarogonas, A. D.: Stability of cracked rotors in the coupled vibrations mode. Trans. ASME/J. Vibration, Acoustics, Stress and Reliability in Design 110 (1988) 356–359Google Scholar
  5. 5.
    Gasch, R.: Dynamic behavior of a simple rotor with a cross-sectional crack. In: Vibrations in rotating machinery, pp. 123–128. London, New York: Institution of Mechanical Engineers 1976Google Scholar
  6. 6.
    Henry, T. A.; Okah-Avae, B. E.; Vibrations in cracked shafts. In: Vibrations in rotating machinery, pp. 15–19. London, New York: Institution of Mechanical Engineers 1976Google Scholar
  7. 7.
    Mayes, I. W.; Davies, W. G. R.: The vibrational behavior of a rotating shaft system containg a transverse crack. In: Vibrations in rotating machinery, pp. 53–65, London, New York: Institution of Mechanical Engineers 1976Google Scholar
  8. 8.
    Dimarogonas, A. D.: Vibration engineering. St. Paul: West Publishers 1976Google Scholar
  9. 9.
    Gasch, R.: Dynamisches Verhalten des Laval-Läufers mit angerissenem Wellenquerschnitt (VDI-Ber. 269). Düsseldorf: VDI-Verlag 1976Google Scholar
  10. 10.
    Dimarogonas, A. D.; Papadopoulos, C. A.: Vibration of cracked shafts in bending. J. Sound Vibration 91 (1983) 583–593Google Scholar
  11. 11.
    Grabowski, B.: The vibrational behavior of a turbine rotor containg transverse crack. J. Mech. Design 102 (1980) 140–146Google Scholar
  12. 12.
    Irwin, G. R.: Fracture mechanics. New York: Pergamon Press 1960Google Scholar
  13. 13.
    Irwin, G. R.: Analysis of stresses and strains near the end of a crack transversing a plate. J. Appl. Mech. 24 (1957) 361–357Google Scholar
  14. 14.
    Ju, F. E.; Akgun, M.; Paez, T. L.; Wang, E. T.: Diagnosis of fracture damage in simple structures. Bureau of Engineering Research, Report No. CE-62 (82), AFOSR-993 University of New Mexico, Albuquerque NM 1982Google Scholar
  15. 15.
    Haisty, B. S.; Springer, W. T.: A general beam element for use in damage assesement of complex structures. Trans. ASME/J. Vibration, Acoustics, Stress and Reliability in Design 110 (1988) 389–394Google Scholar
  16. 16.
    Ju, F. E.; Mimovich, M. E.: Experimental diagnosis of fracture damage in structures by the modal frequency method. Trans. ASME/J. Vibration, Acoustics, Stress and Reliability in Design 110 (1988) 456–463Google Scholar
  17. 17.
    Ostachowicz, W.; Krawczuk, M.: Vibration analysis of a cracked beam. Computers Struct. 36 (1990) 245–250Google Scholar
  18. 18.
    Evan-Iwanowski, R. M.: On the parametric response of structures. Appl. Mech. Rev. 18 (1965) 699–702Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Krawczuk
    • 1
  • W. M. Ostachowicz
    • 1
  1. 1.Institute of Fluid Flow MachineryPolish Academy of SciencesGdańskPoland

Personalised recommendations